Growth Transform of A Sum of Rational Functions
and Its Application in Estimating HMM
Parameters

Xiaoqiang Luo
Center for Language and Speech Processing
Department of Electrical & Computer Engineering
The Johns Hopkins University
Baltimore, MD21218, USA

ABSTRACT

Gopalakrishnan et al [1] described a method called “growth transform” to optimize rational
functions over a domain, which has been found useful to train discriminatively Hidden Markov
Models(HMM) in speech recognition [5, 6, 9]. A sum of rational functions is encountered when
the contributions from other HMM states are weighted in estimating Gaussian parameters of
a state, and the weights are optimized using cross-validation [8]. We will show that the growth
transform of a sum of rational functions can be obtained by computing term-wise gradients
and term-wise function values, as opposed to forming first a single rational function and
then applying the result in [1]. This is computationally advantageous when the objective
function consists of many rational terms and the dimensionality of the domain is high. We
also propose a gradient directed search algorithm to find the appropriate transform constant

C.

1 Introduction

Baum and Eagon [2] studied the problem of maximizing homogeneous polynomials with
nonnegative coefficients over a domain, or a set of probability mass functions. Such problem
arises, for instance, when maximum likelihood estimate (MLE) is sought for discrete Hidden
Markov Models (HMM). Later on, Baum’s result was extended to rational functions with
positive denominators over a domain by Gopalakrishnan and his colleagues[1]. Maximizing
rational functions over a domain occurs in the context of discriminative training of HMM
[5, 6,9, 10].

In this paper, we study the growth transform for a sum of rational functions over a
domain, that is, an objective function R(x) of the form

M
R(z) = >
=1

where P;(z) and Q;(x) are polynomials. x takes value in the domain

Pi(z)

Qi(x)

(1)

qi

j=1

where y;; is the i7" component of vector y (think of y as a double-indexed vector), and
Qi(z) >0(i=1,2,--- ,M) for all x € D.

A sum of rational functions is encountered when the contributions from other HMM states
are weighted in estimating Gaussian parameters of a state, and the weights are optimized
using cross-validation [7, 8]. To simplify the presentation, we assume that Gaussian covariance
matrices {¥;} are known (they are estimated as well in reality), and Gaussian means are
estimated as follows.

= 225 Tig Vil)

Z > i

where 4 and j are indices for HMM states, z;; is the factor that weights the contribution from
J, 7; is the occupancy count of j, and fi; is the maximum likelihood estimate of Gaussian
mean of j. For positive {z;;}, we can always normalize them so that 3 2;; = 1. To estimate
{z;j}, assume that we have a held-out set of training data {o;} which is independent of data
used to estimate {/i;}. Then the “quasi” likelihood of the held-out data measured by {;, ¥;}
is

L) = 5 3 S mt)(on —)5 o —) (1
i t

where x is the totality of {z;;}, 1;(¢) is the occupancy count for i based on the held-out data
{o:}. Plug (3) into (4), and it is easy to see, after ignoring the term independent of x, that
L(x) is of the form

L(x) = —%ZM (5)

!
—~ 1. Bjx;

)

where A; and B; are matrices, and x; is a vector whose jth element is z;;.

In the above, it is assumed that training data is split into two parts and a single Gaussian
is used as the state-output distribution. If P-fold cross-validation is employed and a mixture
of Gaussians is used, then since A; and B; depend on the partition index p and mixture label
[, (5) will become 8]

1 :L"-AZ' ,lwi
L) = ‘52[22%])

Therefore, optimizing each x; boils down to optimizing a sum of rational functions (i.e, terms
in the square bracket of (6)) subject to the constraints >, zi; = 1,z;; > 0. Since (6) is a
special case of (1) we will focus on optimizing (1) in this paper.

The rest of the paper is organized as follows. In Section 2 we briefly restate Gopalakrish-
nan’s result [1] without proof. Then we show that the growth transform for R(z) in (1) can
be obtained by computing only term-wise gradients and function values. A gradient directed
search for proper C' (a necessary constant in the growth transform) is presented in Section 3.
This is motivated by the fact that a fixed C' may lead to either non-growth transform or slow
convergence and therefore it is difficult to pre-determine an appropriate C. The paper ends
with the conclusion remarks in Section 4.

2 Growth Transform for A Sum of Rational Functions

We first restate the main result in [1], where optimizing a single rational function is considered.

That is, there is only one term in (1), R(z) = ggg, where P(z) and Q(z) are polynomials

and Q(z) > 0 for all z € D. It is shown [1] that a map from D to D can be constructed such
that the objective function does not decrease — hence the name “growth transform”. For any
«a € D, define

Sa(z) = P(z) = R(a)Q(z). (7)

Let d, be the degree of Sy(z) and a, be the smallest (negative) coefficient of S, or 0 if all
coefficients are nonnegative. Also Let

Co = _aada(p"i_]-)daila (8)
Co = glea]%cCa. 9)

Notice that maximum in (9) is achievable since D is compact. Then for any C; > Cy(i =
1,2,---,p), & = T[c] defined by

Gy = — Vj=1logii=1,p. (10)
I 0 (T + o)

is a growth transform, namely, R(&) > R(«), where &;; and «;; are the ij"" element of & and
« respectively.
An iterative algorithm can be easily devised by repeating the transform (10) to obtain
a local maximum of R(z). It is worth of pointing out that C; has to do with how fast the
iterative algorithm converges. The larger C; is, the slower the algorithm converges. Indeed,
it can be seen from (10) that as C; — 4+00(Vi), & — «. Therefore it is desirable to use small
C; provided that (10) is a growth transform. It is suggested in [1] that
Ci=C"(a) = max { n%?x{—agaTm)},O} +e€ Vi (11)

v

is used, where € is a preselected “small” number. However, the drawback of such C*(«) is
that it is no longer guaranteed that (10) is a growth transform. We will get back to this
issue in Section 3 and propose a gradient directed search algorithm for a proper C*(«) after
presenting our main result in the following.

Since

M M (P TT . O
R(z) = Z P;(x) _ et (Bi()12 Qi()), (12)

i=1 Qi(z) Hij\il Qi(z)
if we define
M
G(z):=>_ (Pi(z) [[Qi(2), H(x):=]]Qi(x), (13)
i=1 j#i i=1

then R(z) = Gz)

So R(z) in (1) can conceptually be converted to a single rational function and then we
can apply (10). Such straightforward implementation, however, may be computationally
prohibitive if the dimensionality of x is high and M is large. To see this, notice that both
G(z) and H (z) are polynomials, and that the degree of H(x) is Md if each Q;(z) is of degree

d. So H(zx) can have as many as (M ‘fth_l) terms, where n is the dimension of z. When

M and n get large, this number becomes large rapidly. For our problem of estimating the
data-sharing weights [7], M = 72,d = 2 and typically n is about 10, so (M‘f:q_l) ~ 10141
Therefore, it is rather awkward to compute the growth transform by forming explicitly G(z)
and H (z). Fortunately, this is avoidable, as we show now.

For a € D, redefine S,(z) = G(z) — R(a)H(z). To apply (10), we need to calculate

VSa.(a), the gradient of S, (x) evaluated at x = «. Since

VSa(z) = VG(z)— R(a)VH(z) (14)
= VR(z)H(z)+ R(z)VH(z) — R(a)VH(x) (15)
we have
M i\) — I i\ M
VS,(0) = (VR() Lma i) = (3 TS HONAEN TT o). 10)
i=1 i i=1

This shows that VS,(a) can be expressed as a function of {P;(«),Q;(e)} and their
gradients {VP;(z), VQ;(x)} evaluated at © = a. Therefore, the growth transform can be
obtained by only calculating term-wise gradients and function values. When the number of
terms M is large and the dimension of x is high, this is preferable than carrying out the
growth transform directly on G(x) and H(z).

3 Gradient Directed Search for Proper C

As mentioned in Section 2, to speed up the convergence of the algorithm, we want {C;}
as small as possible, provided that the growing nature, R(Z) > R(z) is maintained for all
transforms. The bound Cj defined in (9) is of little use in implementing the growth transform
because, first, computing CY itself is nontrivial. Especially in our case where we do not want
to form G(z) and H(z) explicitly, and therefore a,, the smallest (negative) coefficients of
Sa(x), is unavailable; Second, Cj is a bound that assures (10) is a growth transform starting
from any « € D. Tt is likely to be too large, and consequently, the convergence will be slow
if C; = Cy is used. The heuristic (11) proposed in [1] may speed up the convergence of a
growth transform. However, its drawback is that it may result in a “decrease” transform. So
here we propose a gradient-directed search for {C;}.

One observation about (10) is that scaling the gradient V.S, («) by a positive constant
does not change the transform since it can be absorbed in the constants C;. Let

~ 0S.(ct)
fo = max {I=2 =} (17)
1 08,(a)
gij(a) = @Tm (18)
Cila) = ﬁio (19)

In the above we have assumed [, > 0 (otherwise, V.S, (a) = 0, so (10) implies & = «, which
is a trivial case). Note that |g;;(c)| < 1. With these notations, (10) can be written as

L i (gij(a) + Cz'(a)) (20)
v SE o (gz’k(a) + Ci(“)) .

In other words, we can always normalize the gradient components of VS, («) so that the
normalized values are in [—1,1].

The second observation is that, roughly speaking, small Cj(«) allows the transform (20)
to make big moves while large C;(a) will confine the transformed & to a neighborhood of a.
Therefore, we hope to determine an interval from which C;j(«) takes values. Let s and L be
two positive numbers such that s < 1 and L > 1, and define

po = max{ max{—g;(0)},0} (21)
ma = min{]gi;(0)| | (22)
M, = max{lgi(a 23
A o
We propose to use
Ci(@) = pa + €a (25)

for Cj(a) in (20) and €, € I,, and we will search proper €, in I,. p, is necessary since it
assures that (20) is always admissible, or & € D. Since s < 1 and mq < |gij(a)|, when
€q = SMq <K |gij(0)|, €q has little impact on the transform (20) so it allows the algorithm to
converge fast if it indeed yields a growth transform; On the other hand, when ¢, = LM,,

9ij(@) Pa

LM, | LM,

191 () + pa + LMy| = LM, + 1| ~ LM, (26)
since L > 1, |gij(a)] < M, and 0 < p, < M,. Note that (26) implies & = .

To test the merit of an €,, we have to carry out (20) and then compute R(&), the
objective at @&. This should be avoided whenever possible if evaluating R(&) itself is costly.
So a reasonable strategy would be that we first test whether a small €, leads to a growth
transform. If yes, we will accept it; Otherwise, the search for ¢, € I, is triggered and we
will pick the best €, to carry out the transform (20). Should the search fail to find an e,
that generates a growth transform, we will declare « as a local maximum and terminate the
algorithm.

What is appealing is that it is easy to determine I, when VS, () is available, and s and
L are constants independent of the current z. If L is large enough, it is likely we can find
an €, that leads to a growth transform unless « is a local maximum. We will show some
examples when the paper is presented.

4 Conclusions

In this paper we have studied two practical problems in carrying out the growth transform
for a sum of rational functions. we have shown that the growth transform for a sum of ra-
tional functions can be obtained by calculating the term-wise gradients and function values.
When the number of terms is large and the dimension of the domain in question is high, com-
puting the term-wise quantities is much more efficient than first forming a single numerator
polynomial and a single denominator polynomial and then applying the result in [1].
Motivated by the fact that the transform constant C' has great effect on the speed of
convergence and it is difficult to choose an appropriate value in practice, we propose a gradient
directed search algorithm to find proper C. The proposed algorithm works better, in terms

of both finding better optimal points and computation time, than the heuristic 11. Examples
will be shown when the paper is presented.

For the application of the growth transform to estimating HMM parameters and the
results, readers are referred to [7].

5 Acknowledgment

The author would like to thank Mr. Vaibhava Goel for many useful discussions and suggestions
for improving the paper.

References

[1] P. S. Gopalakrishnan, D. Kanevsky, Arthur Nadas, and David Nahamoo, “An inequality
for rational functions with applications to some statistical estimation problems,” IEFEE
Trans. on Information Theory, vol. 37, no. 1, pp. 107-113, 1991.

[2] L. E. Baum and J. A. Eagon, “An inequality with applications to statistical estimation
for probabilistic functions of a Markov process and to a model for ecology,” Bull. Amer.
Math. Soc., vol. 73, pp. 360-363, 1967.

(3] L.R Bahl, F.Jelinek, and R.L. Mercer, “A maximum likelihood approach to continuous
speech recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 5, no. 2, pp. 179-190, 1983.

[4] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, 1989.

[5] V. Valtchev, P.C Woodland, and S.J Young, “Discriminative optimization of large vocab-
ulary recognition systems,” in Proc. Inter. Conf. of Spoken Language Processing, 1996,
pp- 118-21.

[6] L. R. Bahl, M. Padmananhan, D. Nahamoo, and P.S Gopalakrishnan, “Discriminative
training of Gaussian mixture models for large vocabulary speech recognition systems,” in

Proc. of ICASSP, 1996, pp. 613-617.

[7] Xiaoqgiang Luo, and Frederick Jelinek, “Nonreciprocal Data Sharing in Estimating HMM
Parameters,” in Proc. ICSLP, 1998

[8] Xiaoqiang Luo, and Frederick Jelinek, “Nonreciprocal Data Sharing in Estimating HMM
Parameters,” in CLSP Research Notes No. 32, The Johns Hopkins University, 1998

9] Y. Normandin, Hidden Markov Models, Mazimum Mutual Information Estimation, and
the Speech Recognition Problem, Ph.D thesis, Department of Electrical Engineering,
McGill University, 1991.

[10] Yves Normandin, “Optimal splitting of HMM Gaussian mixture components with MMIE
training,” in Proc. ICASSP, 1995, pp. 1-449-452.

