
Growth Transform of A Sum of Rational Functions

and Its Application in Estimating HMM

Parameters

Xiaoqiang Luo

Center for Language and Speech Processing

Department of Electrical & Computer Engineering

The Johns Hopkins University

Baltimore, MD21218, USA

ABSTRACT

Gopalakrishnan et al [1] described a method called \growth transform" to optimize rational

functions over a domain, which has been found useful to train discriminatively Hidden Markov

Models(HMM) in speech recognition [5, 6, 9]. A sum of rational functions is encountered when

the contributions from other HMM states are weighted in estimating Gaussian parameters of

a state, and the weights are optimized using cross-validation [8]. We will show that the growth

transform of a sum of rational functions can be obtained by computing term-wise gradients

and term-wise function values, as opposed to forming �rst a single rational function and

then applying the result in [1]. This is computationally advantageous when the objective

function consists of many rational terms and the dimensionality of the domain is high. We

also propose a gradient directed search algorithm to �nd the appropriate transform constant

C.

1 Introduction

Baum and Eagon [2] studied the problem of maximizing homogeneous polynomials with

nonnegative coe�cients over a domain, or a set of probability mass functions. Such problem

arises, for instance, when maximum likelihood estimate (MLE) is sought for discrete Hidden

Markov Models (HMM). Later on, Baum's result was extended to rational functions with

positive denominators over a domain by Gopalakrishnan and his colleagues[1]. Maximizing

rational functions over a domain occurs in the context of discriminative training of HMM

[5, 6, 9, 10].

In this paper, we study the growth transform for a sum of rational functions over a

domain, that is, an objective function R(x) of the form

R(x) =

MX
i=1

Pi(x)

Qi(x)
(1)

where Pi(x) and Qi(x) are polynomials. x takes value in the domain

D = fy :

qiX
j=1

yij = 1; yij � 0; i = 1; 2; � � � ; pg; (2)



where yij is the ijth component of vector y (think of y as a double-indexed vector), and

Qi(x) > 0(i = 1; 2; � � � ;M) for all x 2 D.

A sum of rational functions is encountered when the contributions from other HMM states

are weighted in estimating Gaussian parameters of a state, and the weights are optimized

using cross-validation [7, 8]. To simplify the presentation, we assume that Gaussian covariance

matrices f�ig are known (they are estimated as well in reality), and Gaussian means are

estimated as follows.

�i =

P
j xij
j�̂jP
j xij
j

(3)

where i and j are indices for HMM states, xij is the factor that weights the contribution from

j, 
j is the occupancy count of j, and �̂j is the maximum likelihood estimate of Gaussian

mean of j. For positive fxijg, we can always normalize them so that
P

j xij = 1. To estimate

fxijg, assume that we have a held-out set of training data fotg which is independent of data

used to estimate f�̂jg. Then the \quasi" likelihood of the held-out data measured by f�i;�ig

is

L(x) = �
1

2

X
i

X
t

�i(t)(ot � �i)
0��1

i (ot � �i) (4)

where x is the totality of fxijg, �i(t) is the occupancy count for i based on the held-out data

fotg. Plug (3) into (4), and it is easy to see, after ignoring the term independent of x, that

L(x) is of the form

L(x) = �
1

2

X
i

x0iAixi

x0iBixi
(5)

where Ai and Bi are matrices, and xi is a vector whose jth element is xij .

In the above, it is assumed that training data is split into two parts and a single Gaussian

is used as the state-output distribution. If P -fold cross-validation is employed and a mixture

of Gaussians is used, then since Ai and Bi depend on the partition index p and mixture label

l, (5) will become [8]

L(x) = �
1

2

X
i

�X
p

X
l

x0iAi(p; l)xi

x0iBi(p; l)xi

�
(6)

Therefore, optimizing each xi boils down to optimizing a sum of rational functions (i.e, terms

in the square bracket of (6)) subject to the constraints
P

j xij = 1; xij � 0. Since (6) is a

special case of (1) we will focus on optimizing (1) in this paper.

The rest of the paper is organized as follows. In Section 2 we brie
y restate Gopalakrish-

nan's result [1] without proof. Then we show that the growth transform for R(x) in (1) can

be obtained by computing only term-wise gradients and function values. A gradient directed

search for proper C (a necessary constant in the growth transform) is presented in Section 3.

This is motivated by the fact that a �xed C may lead to either non-growth transform or slow

convergence and therefore it is di�cult to pre-determine an appropriate C. The paper ends

with the conclusion remarks in Section 4.

2 Growth Transform for A Sum of Rational Functions

We �rst restate the main result in [1], where optimizing a single rational function is considered.

That is, there is only one term in (1), R(x) =
P (x)

Q(x)
, where P (x) and Q(x) are polynomials



and Q(x) > 0 for all x 2 D. It is shown [1] that a map from D to D can be constructed such

that the objective function does not decrease { hence the name \growth transform". For any

� 2 D, de�ne

S�(x) = P (x)�R(�)Q(x): (7)

Let d� be the degree of S�(x) and a� be the smallest (negative) coe�cient of S�, or 0 if all

coe�cients are nonnegative. Also Let

C� = �a�d�(p+ 1)d��1; (8)

C0 = max
�2D

C�: (9)

Notice that maximum in (9) is achievable since D is compact. Then for any Ci � C0(i =

1; 2; � � � ; p), �̂ = T [�] de�ned by

�̂ij =
�ij(

@S�(�)

@xij
+ Ci)

Pqi
j=1 �ij(

@S�(�)

@xij
+ Ci)

8j = 1; � � � qi; i = 1; � � � ; p: (10)

is a growth transform, namely, R(�̂) � R(�), where �̂ij and �ij are the ij
th element of �̂ and

� respectively.

An iterative algorithm can be easily devised by repeating the transform (10) to obtain

a local maximum of R(x). It is worth of pointing out that Ci has to do with how fast the

iterative algorithm converges. The larger Ci is, the slower the algorithm converges. Indeed,

it can be seen from (10) that as Ci ! +1(8i), �̂! �. Therefore it is desirable to use small

Ci provided that (10) is a growth transform. It is suggested in [1] that

Ci = C�(�) = max
n
max
ij
f�

@S�(�)

@xij
g; 0
o
+ � 8i (11)

is used, where � is a preselected \small" number. However, the drawback of such C�(�) is

that it is no longer guaranteed that (10) is a growth transform. We will get back to this

issue in Section 3 and propose a gradient directed search algorithm for a proper C�(�) after

presenting our main result in the following.

Since

R(x) =

MX
i=1

Pi(x)

Qi(x)
=

PM
i=1

�
Pi(x)

Q
j 6=iQj(x)

�
QM

i=1Qi(x)
; (12)

if we de�ne

G(x) :=

MX
i=1

�
Pi(x)

Y
j 6=i

Qj(x)
�
; H(x) :=

MY
i=1

Qi(x); (13)

then R(x) =
G(x)

H(x)
:

So R(x) in (1) can conceptually be converted to a single rational function and then we

can apply (10). Such straightforward implementation, however, may be computationally

prohibitive if the dimensionality of x is high and M is large. To see this, notice that both

G(x) and H(x) are polynomials, and that the degree of H(x) is Md if each Qi(x) is of degree

d. So H(x) can have as many as
�
Md+n�1

n�1

�
terms, where n is the dimension of x. When



M and n get large, this number becomes large rapidly. For our problem of estimating the

data-sharing weights [7], M = 72; d = 2 and typically n is about 10, so
�
Md+n�1

n�1

�
� 1014!

Therefore, it is rather awkward to compute the growth transform by forming explicitly G(x)

and H(x). Fortunately, this is avoidable, as we show now.

For � 2 D, rede�ne S�(x) = G(x) � R(�)H(x): To apply (10), we need to calculate

rS�(�), the gradient of S�(x) evaluated at x = �. Since

rS�(x) = rG(x)�R(�)rH(x) (14)

= rR(x)H(x) +R(x)rH(x)�R(�)rH(x) (15)

we have

rS�(�) =
�
rR(x)

�
jx=�H(�) =

� MX
i=1

rPi(�)Qi(�) � Pi(�)rQi(�)

Q2
i (�)

� MY
i=1

Qi(�): (16)

This shows that rS�(�) can be expressed as a function of fPi(�); Qi(�)g and their

gradients frPi(x);rQi(x)g evaluated at x = �. Therefore, the growth transform can be

obtained by only calculating term-wise gradients and function values. When the number of

terms M is large and the dimension of x is high, this is preferable than carrying out the

growth transform directly on G(x) and H(x).

3 Gradient Directed Search for Proper C

As mentioned in Section 2, to speed up the convergence of the algorithm, we want fCig

as small as possible, provided that the growing nature, R(x̂) � R(x) is maintained for all

transforms. The bound C0 de�ned in (9) is of little use in implementing the growth transform

because, �rst, computing C0 itself is nontrivial. Especially in our case where we do not want

to form G(x) and H(x) explicitly, and therefore a�, the smallest (negative) coe�cients of

S�(x), is unavailable; Second, C0 is a bound that assures (10) is a growth transform starting

from any � 2 D. It is likely to be too large, and consequently, the convergence will be slow

if Ci = C0 is used. The heuristic (11) proposed in [1] may speed up the convergence of a

growth transform. However, its drawback is that it may result in a \decrease" transform. So

here we propose a gradient-directed search for fCig.

One observation about (10) is that scaling the gradient rS�(�) by a positive constant

does not change the transform since it can be absorbed in the constants Ci. Let

�� = max
ij

n
j
@S�(�)

@xij
j

o
(17)

gij(�) =
1

��

@S�(�)

@xij
(18)

Ci(�) =
1

��
Ci; (19)

In the above we have assumed �� > 0 (otherwise, rS�(�) = 0, so (10) implies �̂ = �, which

is a trivial case). Note that jgij(�)j � 1. With these notations, (10) can be written as

�̂ij =
�ij

�
gij(�) + Ci(�)

�

Pqi
k=1

�ik

�
gik(�) + Ci(�)

� : (20)



In other words, we can always normalize the gradient components of rS�(�) so that the

normalized values are in [�1; 1].

The second observation is that, roughly speaking, small Ci(�) allows the transform (20)

to make big moves while large Ci(�) will con�ne the transformed �̂ to a neighborhood of �.

Therefore, we hope to determine an interval from which Ci(�) takes values. Let s and L be

two positive numbers such that s� 1 and L� 1, and de�ne

p� = max
n
max
ij
f�gij(�)g; 0

o
(21)

m� = min
ij

n
jgij(�)j

o
(22)

M� = max
ij

n
jgij(�)j

o
(23)

I� = [sm�; LM�]: (24)

We propose to use

Ci(�) = p� + �� (25)

for Ci(�) in (20) and �� 2 I�, and we will search proper �� in I�. p� is necessary since it

assures that (20) is always admissible, or �̂ 2 D. Since s � 1 and m� � jgij(�)j, when

�� = sm� � jgij(�)j, �� has little impact on the transform (20) so it allows the algorithm to

converge fast if it indeed yields a growth transform; On the other hand, when �� = LM�,

jgij(�) + p� + LM�j = LM�j
gij(�)

LM�

+
p�

LM�

+ 1j � LM� (26)

since L� 1, jgij(�)j �M� and 0 � p� �M�. Note that (26) implies �̂ � �.

To test the merit of an ��, we have to carry out (20) and then compute R(�̂), the

objective at �̂. This should be avoided whenever possible if evaluating R(�̂) itself is costly.

So a reasonable strategy would be that we �rst test whether a small �� leads to a growth

transform. If yes, we will accept it; Otherwise, the search for �� 2 I� is triggered and we

will pick the best �� to carry out the transform (20). Should the search fail to �nd an ��
that generates a growth transform, we will declare � as a local maximum and terminate the

algorithm.

What is appealing is that it is easy to determine I� when rS�(�) is available, and s and

L are constants independent of the current x. If L is large enough, it is likely we can �nd

an �� that leads to a growth transform unless � is a local maximum. We will show some

examples when the paper is presented.

4 Conclusions

In this paper we have studied two practical problems in carrying out the growth transform

for a sum of rational functions. we have shown that the growth transform for a sum of ra-

tional functions can be obtained by calculating the term-wise gradients and function values.

When the number of terms is large and the dimension of the domain in question is high, com-

puting the term-wise quantities is much more e�cient than �rst forming a single numerator

polynomial and a single denominator polynomial and then applying the result in [1].

Motivated by the fact that the transform constant C has great e�ect on the speed of

convergence and it is di�cult to choose an appropriate value in practice, we propose a gradient

directed search algorithm to �nd proper C. The proposed algorithm works better, in terms



of both �nding better optimal points and computation time, than the heuristic 11. Examples

will be shown when the paper is presented.

For the application of the growth transform to estimating HMM parameters and the

results, readers are referred to [7].

5 Acknowledgment

The author would like to thank Mr. Vaibhava Goel for many useful discussions and suggestions

for improving the paper.

References

[1] P. S. Gopalakrishnan, D. Kanevsky, Arthur Nadas, and David Nahamoo, \An inequality

for rational functions with applications to some statistical estimation problems," IEEE

Trans. on Information Theory, vol. 37, no. 1, pp. 107{113, 1991.

[2] L. E. Baum and J. A. Eagon, \An inequality with applications to statistical estimation

for probabilistic functions of a Markov process and to a model for ecology," Bull. Amer.

Math. Soc., vol. 73, pp. 360{363, 1967.

[3] L.R Bahl, F.Jelinek, and R.L. Mercer, \A maximum likelihood approach to continuous

speech recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 5, no. 2, pp. 179{190, 1983.

[4] L. R. Rabiner, \A tutorial on hidden Markov models and selected applications in speech

recognition," Proceedings of the IEEE, vol. 77, no. 2, pp. 257{286, 1989.

[5] V. Valtchev, P.C Woodland, and S.J Young, \Discriminative optimization of large vocab-

ulary recognition systems," in Proc. Inter. Conf. of Spoken Language Processing, 1996,

pp. I18{21.

[6] L. R. Bahl, M. Padmananhan, D. Nahamoo, and P.S Gopalakrishnan, \Discriminative

training of Gaussian mixture models for large vocabulary speech recognition systems," in

Proc. of ICASSP, 1996, pp. 613{617.

[7] Xiaoqiang Luo, and Frederick Jelinek, \Nonreciprocal Data Sharing in Estimating HMM

Parameters," in Proc. ICSLP, 1998

[8] Xiaoqiang Luo, and Frederick Jelinek, \Nonreciprocal Data Sharing in Estimating HMM

Parameters," in CLSP Research Notes No. 32, The Johns Hopkins University, 1998

[9] Y. Normandin, Hidden Markov Models, Maximum Mutual Information Estimation, and

the Speech Recognition Problem, Ph.D thesis, Department of Electrical Engineering,

McGill University, 1991.

[10] Yves Normandin, \Optimal splitting of HMM Gaussian mixture components with MMIE

training," in Proc. ICASSP, 1995, pp. I{449{452.


