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ABSTRACT

In this paper we propose to introduce backing-off in the acoustic
contributions of the local distance functions used during Viterbi
decoding as an operationalisation of missing feature theory for in-
creased recognition robustness. Acoustic backing-off effectively
removes the detrimental influence of outlier values from the lo-
ca decisionsin the Viterbi algorithm. It does so without the need
for prior knowledge that specific features are missing. Acoustic
backing-off avoids any kind of explicit outlier detection.

This paper provides a proof of concept of acoustic backing-off in
the context of connected digit recognition over the telephone, us-
ing artificial distortions of the acoustic observations. It is shown
that the word error rate can be maintained at the level of 2.5% ob-
tained for undisturbed features, even in the case where a conven-
tional local distance computation without backing-off leads to a
word error rate > 80.0%. The approach appearsto be ableto han-
dle up to four independent corrupted features.

1. INTRODUCTION

Speech is a highly redundant communication medium. Mogt, if
not al, information is coded in severa different signal parame-
ters. While this redundancy and cue-trading may make phonetic
research more difficult, it certainly helpsto make speech more ro-
bust under adverse acoustic conditions: If one or two features that
can code a certain information item get drowned in background
noise, chances are that enough other features areleft that carry es-
sentialy the same information. To a large extent the lack of ro-
bustness of automatic speech recognition systems can be traced
back to their rigid focus on a small subset of the possible parame-
ters, which is only aggravated by the lack of effective techniques
to discover that one or more of those focus parameters are affected
by noise.

Recently, it was shown in [1] that the missing feature theory, de-
rived from acoustic phonetics research, can be brought to bear on
theissue of robustness of ASR systems. Thework in[1] provided
a proof of concept: If an ASR device has the prior information
that some features are corrupted, and if its scoring procedure is
such that corrupted features can be discarded, it is made very ro-
bust against distortions. Of courseg, it isdifficult to imaginethat a
real ASR system ever will have that prior information (beyond ob-
vious information about channel bandwidth limitsand coding). In
this paper we want to take the proof of concept that missing fea-
ture theory can be used in ‘conventional’ ASR one step further.

We show that prior knowledge about which features are corrupted
is not necessary. Instead, statistical procedures that have proven
their power in other problemsin large vocabulary speech recogni-
tion can be used to limit the impact of possibly corrupted features
in the scoring of the likelihood of alternative hypotheses, with the
same robustifying effect as obtained in [1]. Moreover, since the
method proposed in this paper is purely statistical in nature, it will
work with any feature set, not just spectral features. In this paper
we use MFCCs and their deltas, but any other feature set could
have been used as well.

To be able to investigate the statistical properties of our approach
we have analysed artificially induced corruptions of an initially
clean parameter set. Moreover, we have used corruptions that are
easy to model, rather than corruptions that are physically ‘reason-
able’. This allows us to investigate the effect of increasing the
number of potentially corrupted parameters on the performance
of the recogniser, and to make sure that the performance degrades
gracefully.

In section 2 we explain the theory underlying our approach; sec-
tion 3 describes the experimental set-up that was used to test the
new approach, and section 4 gives the major results.

2. THEORY

We assume that we have a set of independent measurements of a
stochastic process at time instant ¢ which constitute an observa-
tion vector x(t), with dim(x) = K. In addition, we assume that
we have J distinct classes (states) S;,5 = 1,...,J from which
the stochastic process originates.

Viterbi decoding needs some measure for local distance to iden-
tify the best path through the search space (e.g. [2]):

dioc(Sj,x(t)) = —loglp(S;)] +
+ ) {=log[p(zx(®)[S;n)]}, (D)

k=1

where d;,.(S;, x(t)) isthelocal distance function (LDF), p(S;)
is the probability of being in class S;, and p(z(t)|S;x) denotes
thelikelihood of observing feature value z,(¢) belonging to coor-
dinate k whilein class S;.

Mixtures of continuous probability density functions (pdfs) have
appeared to be very powerful and effectivein ASR devicesto de-
scribe the likelihood p(z« (¢)|S;x). S0, as a parametric approxi-



mation of the likelihood p(z (t)|S; ), we may write

M
D(xr(t)|Sjr) = Z CitmG(@e (), tjkm, Tikm) (2

m=1

with Em ¢jkm = 1, M the number of pdfs G in the continu-
ousmixtureand ., xm , o3, denoting the m-th mean and variance
describing coordinate k of class S;, respectively. Since we as-
sumed that we are working with independent scalar observations,
we have variances here, not a covariance matrix. For clarity of
the presentation, we will limit ourselves to a uni-variate, single
Gaussian pdf. However, our approach generalises in a straight-
forward way to the case of multi-variate mixtures of Gaussians (or
Laplacians or other parametric forms).

While the central portions of the parameter distributions in each
state can be modelled accurately with almost any kind of mixture
distributions, it remains questionable whether the same will ever
hold for the tails of the distributions. By using the term * distribu-
tion” weimply theassumption that all observations belong to some
unique population, evenisitisworthwhileto distinguish anumber
of sub-populations, each of which may be accounted for by one or
more densities. However, if we take due account of the possibil-
ity of observations being distorted, and of the myriad number of
ways in which distortions can affect parameter values, the ques-
tion arises whether the borders of the distributions can at all be
modelled accurately with the same set of mixturesthat are trained
to account for the central portion. Asking the question is para-
mount to answering it. Thus, we have |ooked for ways to model
the borders of the distributions explicitly, and in a way indepen-
dently from the central portions. The inspiration for the solution
proposed in this paper came from the way the sparse data problem
in language modelling is handled, where all observations beyond
some distance from the centre of the distribution are given the
same, finite count, instead of relying on the true count observed
in the training corpus[3].

Any procedure which limits the impact of distortions and other
outliers on the LDF should help to eliminate the contribution
of parameters with values that are widely beyond what was ob-
served during training (cf. [1], [4], [5]). Inastudy in the field
of speaker recognition [6] it was proposed to hard limit the cost
function at p + 30. Here, we propose to limit the contribu-
tion of a—possibly corrupted— parameter observation to the LDF
by means of a backing-off procedure similar to what is known
from language models. By doing so, we curb the contribution of
a corrupted parameter to the LDF. We compute the contribution
p(zk(t)|S;x) in Eq. (1) asfollows

—log[p(zk(t)|Sjr] = —loglap(zr(t)|Sir) + (1 —a)por], (3)

with o a backing-off value. poy. is the (constant) probability that
an arbitrary observation fallsbeyond the central portion of thedis-
tribution. Unlike the approach in [6], Eq. (3) can still be inter-
preted as the — log of atrue probability. Thisis afeature that we
will need in future research.

Also, the right hand side of Eqg. (3) is a continuous and continu-
ousdly differentiablefunction; thiseliminatesthe need to branch to-
wards qualitatively different processes if an observation exceeds
some necessarily arbitrary threshold. Thus, we have effectively
removed the need for explicit and error prone procedures for de-
tecting outliers.

Our model of acoustic observations is the sum of a mixture of
(Gaussian) densities representing the central part of the distribu-
tion (i.e. the speech characterics as observed during training) and
auniform distribution that models the rest of the world. By doing
so, we effectively admit that we have not enough training data to
be able to discriminate between bad and worse outliers. Itisbetter
to treat them all in the same way, and attach constant penalty val-
uesto them, instead of accepting potentially extremely high penal-
tiesif a corrupted parameter happens to fall in the very far end of
the tail of a (Gaussian) distribution which belongs to a different
population than the observation at hand anyway.

Fig. 1 showstheeffect of acoustic backing-off for« = 0.9999 and
a = 0.99 respectively (solid curves). As points of reference, the
boundaries of theregion | *>#| < 3 areindicated by vertical lines.
Now, suppose that coordinate k of the current observation is an
outlier; rather than giving riseto avery large penalty for the proper
state, with our LDF the penalty will be bounded. Moreover, the
same will hold for amost all other pdfs of amost all other states:
Here too the acoustic contribution of z;. (¢) to the LDF reduces to
—log[(1 — a)pro] (cf. Fig. 1). Thefact that we have chosen poy,
to be independent of state j, ensures that the contribution of the
corrupted parameter to almost all pdfs becomes equal and the pa-
rameter is effectively discarded for thisframe. Of course, the cor-
rupted parameter may happen to lay closeto the central portion of
the distribution in some completely unrelated states, giving rise to
asmall penalty. However, aslong asmost other parametersare un-
corrupted, the total penalty for these states will still be relatively
high, so that thereislittlerisk that the corrupted parameter(s) will
cause astrong preference for thewrong states. Itisinteresting and
important that the effective elimination of a corrupted parameter
will occur even if the corrupted value is well within the range of
values for that parameter observed in al the training data. The
only requirement that must be fulfilled is that it is shifted to the
tail of most of the densities.
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Figurel: Contributiontolocal distancewithout (dashed line) and
with (solid lines) acoustic backing-off for two different values of
a (i.e. 0.9999 and 0.99). Vertical linesindicate the boundaries of
theregion | 2==£| < 3.



3. EXPERIMENTAL SET-UP

In order to test the effectiveness of alocal distance function sug-
gested in Eq. (3), we carried out an experiment with a connected
digit recogniser trained for telephone speech. Weartificially mod-
ified the acoustic vectors of the test utterances. We would like to
stress that our artificially constructed distortions are not intended
to model any real-life situation. Here we only want to prove
that acoustic backing-off is capable to handle outlier observations
in such a way that recognition performance degrades gracefully
when the amount of distortion increases.

3.1. Database

The speech material for our experiments wastaken from the Dutch
POLY PHONE corpus [7]. Speakers were recorded over the pub-
lic switched telephone network in the Netherlands. Handset and
channel characteristics are not known; especially handset charac-
teristicsareknown to vary widely. None of the utterances used for
training or test had a high background noise level.

Among other things, the speakers were asked to read a connected
digit string containing six digits (item “01" in the database). For
training we reserved a set of 480 strings, i.e., 40 speakers (20 fe-
males and 20 males) from each of the 12 provinces in the Nether-
lands. An independent set of 911 utterances (461 females, 450
mal es) was set apart for testing. For cross-validation during train-
ing [8] we used a subset of 240 utterances taken from the test set
(120 females, 120 males). For evaluation of the modelswe aways
used the 671 test set utterances that were not used during cross-
validation.

3.2. Signal processing

Speech signalswererecorded from aprimary rate | SDN telephone
connection and stored in A-law format. A 25 ms Hamming win-
dow shifted with 10 ms steps and a pre-emphasis factor of .98
were used to calculate 24 filter band energy values. The 24 trian-
gular filters were uniformly distributed on a mel-frequency scale
(covering O - 2143.6 mel) [9]. Finally, 12 mel-frequency cepstral
coefficients (MFCCs) were computed. In addition to the twelve
MFCCs we also used their first time-derivatives (delta- MFCCs),
log-energy (logE) and its first time-derivative (delta-logE), mak-
ing for 26-dimensional feature vectors. Finally, we applied cep-
strum mean subtraction to thetwelveMFCCsin order to normalise
for channel variations.

3.3. Acoustic distortion types

We randomly selected 1 of the 26 coordinates of afeature vector.
For that selected coordinate, the observation value was replaced
by anew value which was cal culated as follows. Using all avail-
able training data, we first determined the distribution of obser-
vation values for each individual coordinate. In each distribution,
we determined athreshold value T}, such that 0.05% of the obser-
vations was lying above thisthreshold. The selected coordinate k&
was disturbed by assigning it the value ¢T}, with ¢ aconstant. We
always independently disturbed all feature vectors in a test utter-
anceand did sofor all test utterances. We used different valuesfor
c to be able to study the effect of scaling the distortion. In addi-
tion, for some of our experiments we disturbed not just one single
coordinate, but did so for 2, 4, and 8 coordinates.

34. Modds
Theten words of the Dutch digit set can be described with 18 con-

text independent phone models. In addition we used four models
for silence, very soft background noise, other background noise
and out-of-vocabulary speech. Each HMM consisted of three
states. The total number of different states was 66 (54 for the
phones plus 12 for the noise models) for our most simple mod-
els. We trained HMMs with up to 528 Gaussian densitiesin total,
each time with diagonal covariance matrices. The HMMs were
strict left-to-right, with only self-loops and transitions to the next
state. For al experiments reported in this paper, the models were
trained only once using undisturbed features.

4. RESULTSAND DISCUSSION

In afirst recognition experiment, the distortions were limited to
one single coordinate randomly selected for each acoustic vector
in our test utterances. The distortion scale factor ¢ was varied in
therange 0.1 —1.0. Inthismanner the distorted values are always
still lying well within the range observed in the training data. It
isreasonable to expect that the distorted values are in many cases
outlierswith respect to the Gaussian distribution towhich the orig-
inal value belonged. For comparison aso undisturbed features
were tested. We determined the word error rate (WER) for differ-
ent HMM sets using L DF computation without and with backing-
off. For the experiments with backing-off « = 0.9999 was used.
Theresults are shown in Fig. 2; the WER values at ¢ = 0.0 show
the results for the undisturbed features. Apparently, backing-off
has virtually no effect on WER for undisturbed features (WER
goes up from 2.4% to 2.5% for HMMs with 528 Gaussians).
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Figure2: Recognition resultsfor conventional LDF (dashed lines
connecting ‘ x’) and LDF using backing-off with « = 0.9999
(solid lines connecting ‘o’) for a single distorted coordinate. In
both cases results are shown for HMMs with (from top to bottom)
atotal of 66, 132, 264 & 528 Gaussian densities.

The resultsin Fig. 2 clearly indicate that acoustic backing-off is
very effective for this type of distortions. When backing-off is
applied the WER remains at the level of the undistorted condi-
tion, whereas WER increases significantly without backing-off.
Although WER differences are small when backing-off isapplied,



it appearsthat recognition performance suffersmost for ¢ = 0.75.
In asecond experiment we compared the recognition performance
without and with backing-off for extreme distortions: Corrupted
parameterswere given thevalue 1.973,. Thiscorresponds roughly
with the maximum value of the parameter ever observed in the
training data. Without backing-off we found WER = 88.8% for
the HMM set with 528 Gaussians. When we applied backing-off
witha = 0.9999 for the same model set we found WER = 2.6%.
Thus, acoustic backing-off is capable of maintaining the WER
level at 2.5%, where LDF computation without backing-off leads
to aWER value > 80%.

Next, we determined recognition performance with and without
backing-off as a function of the number of coordinates disturbed
using ¢ = 0.75 in al cases. The results shown in Fig. 3 are
for HMM sets with atotal of 528 Gaussian densities. Results for
66, 132, 264 Gaussians are not shown but are very similar. With
a = 0.9999 recognition starts breaking down at two distorted co-
ordinates. With o = 0.99, however, recognition performance is
maintained at an acceptable level for distortions in up to four co-
ordinates. Thus, the backing-off factor ac should be diminished
in order to longer maintain recognition performance at the level
in the undistorted condition when more and more coordinates are
disturbed.

Experiments are under way to determine the sensitivity of the
recogniser performance to the value of a. Also, experiments are
planned in which realistic distortions are applied to the speech sig-
nals prior to their transformation to MFCCs.
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Figure 3: Effect of acoustic backing-off on WER as a function
of the number of disturbed coordinates. Three different values of
the backing-off factor were used: o = 1.0 (i.e. no backing-off;
indicated with x), & = 0.9999 (indicated with o) and o = 0.99
(indicated with +). Results shown are for HMMs with atotal of
528 Gaussian densities.

5. CONCLUSIONS

In this paper we proposed to use acoustic backing-off asaway to
implement missing feature theory in the framework of an other-
wise straightforward HMM recogniser. In our approach the de-
coder does not need prior knowledge about which features are po-

tentially distorted. On the contrary, it does not need any kind of
explicit "outlier detection’. This property should make it suitable
for handling real-world distortions due to background noise or bit
errorsin digital radio links.

If acoustic backing-off is applied to clean signals, the WER of
the recogniser is not affected. In the simulation experiments re-
ported in this paper the performance of the recogniser remained
at the samelevel when increasingly large distortions were applied
in up to four independent features. The performance of the orig-
inal recogniser started to break down at moderate distortionsin a
single feature.

Our results show that the concept of missing feature theory to im-
proverobustness of ASRisviable, and that it remains viablewith-
out the need for explicit decisions about which features are mis-
sing.
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