SOFT STATE-TYING FOR HMM-BASED SPEECH RECOGNITION
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ABSTRACT

This paper introduces a method for regularization of HMM sys-
temsthat avoidsparameter overfitting caused by insufficient train-
ing data. Regularization is done by augmenting the EM training
method by a penalty term that favors simple and smooth HMM
systems. The penalty term is constructed as a mixture model of
negative exponential distributions that is assumed to generatethe
state dependent emission probabilities of the HMMs. This new
method is the successful transfer of awell known regularization
approachin neural networkstothe HMM domain and can beinter-
preted asa generalization of traditional state-tying for HMM sys-
tems. The effect of regularization is demonstrated for continuous
speech recognition tasksby improving overfitted triphone models
and by speaker adaptation with limited training data.

1. INTRODUCTION

A general problem when constructing statistical pattern recogni-
tion systemsis to ensure the capability to generalizewell, i.e. the
system must be able to classify data that is not contained in the
training data set. Hence, the classifier hasto learn the true under-
lying data distribution instead of overfitting to the few data ex-
amples seen during system training. One way to cope with the
problem of overfitting is to balance the system’s complexity and
flexibility against the limited amount of data that is available for
training.

In the neural network community it is well known that the
amount of information used in systemtraining that is required for
agood generalization performance should be larger than the num-
ber of adjustable weights[1]. A common method to train alarge
size neural network sufficiently well is to reduce the number of
adjustable parameterseither by removing those weightsthat seem
to be less important (in [2] the sensitivity of individual network
weights is estimated by the second order gradient) or by sharing
the weights among many network connections(in [3] the connec-
tionsthat shareidentical weight valuesare determined in advance
by using prior knowledge about invariances in the problem to be
solved). A second approach to avoid overfitting in neural net-
works is to make use of regularization methods. Regularization
adds an extra term to the training objective function that penal-
izes network complexity. The simplest regularization method is
weight decay [4] that assigns high penalties to large weights. A
more complex regularization term is used in soft weight-sharing
[5] by favoring neural network weightsthat fall into afinite set of
small weight-clusters. Thetraditional neural weight sharing tech-
nique can be interpreted as a special case of soft weight-sharing
regularization when the cluster variancestend towards zero.

In continuous speech recognition the Hidden Markov Model
(HMM) method is common. When using detailed context-
dependent triphone HMMs, the number of HMM-states and para-
metersto estimatein the state-dependent probability density func-
tions (pdfs) isincreasingly large and overfitting becomesaserious
problem. The most common approach to balance the complexity
of triphoneHMM systems against the training data set isto reduce
the number of parameters by tying, i.e. parameter sharing [6]. A
popular sharing method is state-tying with selecting the HMM-
states to be tied in advance, either by data-driven state-clustering
based on a pdf-dependent distance metric [7], or by construct-
ing binary decision trees that incorporate higher phonetic know-
ledge[8]. In these methods, the number of state-clusters and the
decision tree sizes, respectively, must be chosen adequately to
match the training data size. However, a possible drawback of
both methods is that two different states may be selected to be
tied (and their pdfs are forced to be identical) although there is
enough training data to estimate the different pdfs of both states
sufficiently well. In the following, a method to reduce the com-
plexity of general HMM systemsbased on aregularizationtermis
presented. Dueto its closerelationship to the soft weight-sharing
method for neural networksthis novel approach canbeinterpreted
as soft state-tying.

2. MAXIMUM LIKELIHOOD TRAINING IN
HMM SYSTEMS

Traditionally, the method most commonly used to determine
the set of adjustable parameters © in a HMM system is max-
imum likelihood (ML) estimation via the expectation maximiza-
tion (EM) agorithm. If the training observation vector sequence
isdenoted as X = (x(1),...,x(7")) and the corresponding
HMM is denoted as W the ML estimator is given by:

GML _ argmax {log pe (X|1V)} (€N

In the following, the total number of different HMM states is
given by K. The emission pdf of the k-th state is denoted as
bi.(x); for continuousHMMs by, (x) isamixture of Gaussian pdfs
most commonly; in the case of discrete HMMs the observation
vector x is mapped by a vector quantizer (VQ) on the discrete
VQ-label 7 (x) and the emission pdf is replaced by the discrete
output probability b (). Using theforward-backward algorithm
the probabilistic state counts ~x(t) can be determined for each
training observation and the log-likelihood over the training data
can be decomposedinto the auxiliary function Q(©) optimizedin



the EM steps (state transition probabilities are neglected here):

QO) = " w(t) - logbi(x(t)) @
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Sometimes, the observation vector x is split up into several in-
dependent streams. If the total number of streamsisgiven by 7,
the features in the #-th stream comprise the subvector x© and
in the case of application of a VQ the corresponding VQ label
is denoted as 7 (x@). The observation subvectorsin different
streams are assumedto be statistically independent thusthe states’
pdfs can be written as:

Z
br(x) = [ b (x%) ©)
z=1
3. ACOMPLEXITY MEASURE FOR HMM
SYSTEMS

When using regul arization methodsto train the HMM system, the
traditional objective training function Q(©) is augmented by a
complexity penalization term €2 and the new optimization prob-
lem becomes:

gred — argmax {Q(©)+v-Q} 4

Here, theregulizer term €2 should besmall if theHMM systemhas
high complexity and parameter overfitting becomesa problem; ©
should belarge if the HMM-states' pdfs are shaped smoothly and
system generalizationworkswell. Theconstant > 0 isacontrol
parameter that adjusts the tradeoff between the pure ML solution
and the smoothness of penalization. In Eqgn. (4) the term Q(©)
becomes larger the more data is used for training (which makes
the ML estimation become morereliable) and the influence of the
term v - Q) getsless important, relatively.

The basic idea when constructing an expression for the reg-
ulizer 2 that favors smooth HMM systems is, that in the case
of simple and smooth systems the state-dependent emission pdfs
b (+) shouldfall into several groupsof similar pdfs. Thisisincon-
trast to the traditional state-tying that forcesidentical pdfsin each
group. These differences are illustrated in Fig. 1 for an example
of two-state HMMs with discrete emission probabilities. In the
following, the clusters of similar emission pdfs are described by a
probabilistic mixture model. Each pdf is assumedto be generated
by amixture of I different mixture componentsp;(-). Inthiscase
the probability (-density) of generating the emission pdf by (-) is
given by:

I
pbe(:) = eipilb(-)) ®)
=1

with themixture weightsc; that are constrainedto0 < ¢; < 1 and
1=Y"!_, ei. Thei-th mixture component p; (-) is used to model
the i-th cluster of HMM-emission pdfs. Each cluster is represen-
ted by a prototype pdf that is denoted as 3; (-) for the i-th cluster;
the distance (using a suitable metric) between a HMM emission
pdf b () and the i-th prototype pdf is denoted as D; (bx(-)). If
thesedistancesare small for all HMM emission probabilitiesthere
are several small clusters of emission probabilities and the reg-
ulizer term €2 should be large. Now, it is assumed that the dis-
tancesfollow anegative exponential distribution (with adeviation
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Figure 1. Changesof discrete emission probabilities by state-
tying and by regularization

parameter );), yielding an expression for the mixture compon-
ents:

pi(bi()) = (H A) - exp (— > Ais o Dis (b (~)))

(6)
In Eqgn. (6) the more general case of 7 independent streams is
given. Hence, the HMM emission pdfs and the cluster proto-
type pdfs are split up into Z different pdfsb”(-) and 87 (-), re-
spectively and the stream dependent distances ;. and paramet-
ers ;. are used.
Now, for the regulizer term €2 thelog-likelihood of the mixture
model in Egn. (5) over al emission pdfsin the HMM system can
be used:

Q= Zlogp(bk(~)) (7)

4. REGULARIZATION EXAMPLE:
DISCRETE HMMS

As an example for parameter estimation in the regularization
framework, a discrete HMM system with different VQs for each
of the Z streamsis considered here: Each VQ subdividesthe fea-
ture spaceinto J. different partitions (i.e. the z-th codebook size



is J.) andthe VQ- partltlon labels are denoted m . If the obser-
vation subvector x©@ isin the j-th VQ- partition the VQ output is
@ (x?) = m®

Since discrete HMM output probabilities 617 (2 9) are used
here, the regulizer's prototypes are the discrete probabilities
ﬁfz)(mf)). As a distance metric between the HMM emission
probabilities and the prototype probabilities used in Eqgn. (6) the
asymmetric Kullback-L eibler divergenceis applied:

@ a0 @ by (m)
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4.1. Estimation of HMM parameters using regu-
larization

The parameter set © of the HMM system to be estimated mainly
consists of the discrete HMM emission probabilities (transition
probabilities are not subject of regularization here). To get aniter-
ative parameter estimation inthe EM style, Eqn. (4) must be max-
imized; e.g. by setting thederivative of Eqn. (4) with respectto the
HMM -parameter b(z)( (Z)) to zero and application of Lagrange
multipliers with regard to the constraint 1= 3""= b (m'?).
Thisleadsto a quite complex solution that can be only solved nu-
merically.

The optimization problem can be simplified if the mixture in
Eqn. (5) isreplaced by the maximum approximation; i.e. only the
maximum component in the sum is considered. The correspond-
ing index of the maximum component is denoted :*:

p(br(-)) R cis - pis (bi(-)) = max {ci-pi(br(1))}  (9)

1<e<T

In this simplified casethe HMM parameter estimation isgiven
by:

v o
N )+ Z (8 80 (), m®
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Thisisaweighted sum of thewell known ML solutionand the(reg?
ulizer's prototype probability ﬁfi) (+) that is selected by the max-
imum search in Eqgn. (9). The larger the value of the constant
v, the stronger is the force that pushes the estimate of the HMM
emission probability Bﬁf) (mgz)) towards the prototype probability
ﬁfi) (). The situation when v tends towards infinity corresponds
to the case of traditional state-tying, because all different states
that fall into the same cluster i* make use of 3% (-) as emission
probability in the z-th stream.

4.2. Estimation of regulizer parameters

The parameter set ¢ of the regulizer consists of the mixture
weights¢;, the deviation parameters Aq, =, and of the discrete pro-
totype probabilities [3 ( ) in the case of regulizing discrete
HMMs. These parameters can be set in advance by making use
of prior knowledge; e.g. the prototype probabilities can be ob-
tained from a simple HMM system that uses a small number of
states. Alternatively, the regulizer’s parameters can be estimated
in a similar way asin [5] by maximizing Egn. (7). Since there

is no direct solution to this optimization problem, maximization
must be performed in an EM-like iterative procedurethat usesthe
HMM emission pdfs b (-) astraining data for the mixture model
and by increasing the following auxiliary function in each step:

> PGk

k=1 =1

SN Pilbe())

k=1 =1

R(¢)

) -log p(i, b (-))

log (ci - pi(b(+))) (11)

with the posterior probability used asweighting factor given by:

ci - pi(bx(-))
>y e pubi()
Again, maximization of Eqgn. (11) can be performed by setting
the derivative of R(¢) with respect to the regulizer’s parameters
to zero under consideration of the constraints 1 = >_1_, ¢; and

=3 Ji L [3 by application of Lagrangemultipliers. For
the esimation of the regulizer parametersthis yields:

Plalbe(-)) = (12)
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Theestimateé; can beinterpreted asthe averageprobability that a
HMM emission probability fallsinto the :-th mixture cluster; A; -
istheinverse of the weighted average distance between theemis-
sion probabi litiesand the prototype probability [3 ( ). Theestim-
ate [3 ( ) isthe average probability over all emission probab-

ilities for theVQ label m] Werghted in the log-domain.

If the Euclidean distance between the discrete probabilities is
used instead of Eqn. (8) to measure the differences between the
HMM emission probabilities and the prototypes:

Jz

2
Di (b2 (2 ®)) = Z (ﬁl(z)(mgz)) B bf)(mf)))

j=1

(16)

the estimate of the prototype probabilitiesis given by the average
of the HMM probabilities weighted in the original space:

30,0y _ e PUIB(C) b7 ()
e v PUIBL()

5. EXPERIMENTAL RESULTS

To investigate the performance of the regularization methods de-
scribed abovea HMM speech recognition systemfor the speaker-
independent resource management (RM) continuous speech task

17)



isbuilt up. For training 3990 sentencesfrom 109 different speak-
ers are used. Recognition results are given as word error rates
averaged over the official DARPA RM test sets feb’'89, oct’ 89,
feb’91 and sep’ 92, consisting of 1200 sentencesfrom 40 different
speakers, totally. Recognition is done via a beam search guided
Viterbi decoder using the DARPA RM word pair grammar (per-
plexity: 60).

Asacoustic featuresevery 10 ms 12 MFCC coefficientsand the
relative signal power are extracted from the speech signal along
with the dynamic A- and A A-features, comprising 39 features
per frame. The HMM system makes use of standard 3-state dis-
crete probability phonetic models. Four different neural network
VQs, trained by the MMI method that is described in in [9], are
used to quantize the featuresinto Z = 4 different streams of dis-
crete labels. The codebook sizein each stream is set to 200.

A simple system with models for 47 monophones and for the
most prominent 33 function words (totally 394 states) yields a
word error rate of 8.6%. A system that makes use of the more
detailed (but untied) word internal triphone models (totally 6921
states) yields 12.2% word error. Hence, HMM overfitting because
of insufficient training data is a severe problem in this case. It
must be noted that in contrast to the usual training procedure in
[10] no further smoothing methods are applied to the HMM emis-
sion probabilities here.

In afirst series of experiments the untied triphone system is
regulized by a quite simple mixture of I = 394 density compon-
ents, i.e. the number of clustersin the penalty term isidentical to
the number of states in the monophone system. In this case the
prototype probabilities are initialized by the emission probabilit-
ies of the monophone system; the mixture weights and the devi-
ation parameters in the regulizer are set to be uniform, initially.
In order to test the inluence of the tradeoff parameter v itissetto
50, 10 and 2. The corresponding word error rates are 8.4%, 6.9%
and 6.3%, respectively. In the case of large vs regularization de-
grades to atying of triphone states to monophone states and the
error rate tends towards the monophone system performance. For
smaller vsthereisagood tradeoff between datafitting and HMM
smoothness yielding improved system performance. The initial
prototype probability settings provided by the monophonesystem
do not seem to be changed much by regulizer parameter estima-
tion, sincethe system performanceonly changesslightly when the
regulizer's parameter reestimation is not incorporated.

In preliminary experiments the regularization method is also
used for speaker adaptation. A speaker-independent system
trained on the Wall Street Journal (WSJ) database yields an er-
ror rate of 32.4% on the Nov. 93 S3_PO0 test set with 10 differ-
ent non-native speakers. The speaker-independent HMM emis-
sion probabilities are used to initialize the prototype probabilit-
iesof theregulizer. Then, speaker-dependent systemsare built up
for each speaker using only 40 fast enrollment sentencesfor train-
ing along with regularization (v is set to 10). Now, the error rate
dropsto 25.7% what is better than the speaker adaptation method
describedin[11] that yields 27.3% by alinear feature spacetrans-
formation. In combination both methods achieve 23.0% word er-
ror.

6. SUMMARY AND DISCUSSION

A method to avoid parameter overfittingin HMM systemsby ap-
plication of a regularization term that favor smooth and simple
models has been presented here. The complexity measureapplied
to the HMM s is based on afinite mixture of negative exponential

distributions, that generatesthe state-dependent emission probab-
ilities. This kind of regularization term can be interpreted as a
soft state-tying, sinceit forcesthe HMM emission probabilitiesto
form afinite set of clusters. The effect of regularization has been
demonstrated on the RM task by improving overfitted triphone
models. On a WSJ non-native speaker adaption task with limited
training data, regularization outperformsfeature spacetransform-
ations.

Eqn. (4) may bealsointerpreted from aperspectiveof Bayesian
inference: theterm v - Q2 playstherole of setting a prior distribu-
tion onthe HMM parametersto be estimated. Hence, the use of a
mixture model for €2 is equivalent to using aspecial kind of prior
in the framework of MAP estimation for HMMs [12].
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