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ABSTRACT

In this paper, we propose a procedure for training a
pronunciation network with criteria consistent with the op-
timality objectives for speech recognition systems. In par-
ticular, we describe a framework for using maximum likeli-
hood(ML) and minimum classification error(MCE) criteria
for pronunciation network optimization. The ML criterion
is used to obtain an optimal structure for the pronunciation
network based on statistically-derived phonological rules.
Discrimination among different pronunciation networks is
achieved by weighting of the pronunciation networks, opti-
mized by applying the MCE criterion. Experinent results
demonstrate improvements in speech recognition accuracy
after applying statistically derived phonological rules. It is
shown that the impact of the pronunciation network weight-
ing on the recognition performance is determined by the size

of the recognition vocabulary.

1. INTRODUCTION

Variations in pronunciation arise in natural speech due to
phonological and productional reasons. Incorporating al-
ternative pronunciations into a speech recognition decod-
ing network can potentially improve the recognition ac-
curacy. There has been extensive study in using decision
trees to represent pronunciation variations [1]. For the Re-
source Management(RM) task(991 words with perplexity 60
grammar) this approach achieves 96.3% word accuracy ver-
sus 93.4% word accuracy obtained with conventional single
baseform technique. A training procedure in this approach
is based on splitting a pronunciation tree node to increase
the degree of predictability, as measured by an entropy fig-
ure, of the subsequent phonemes. Although the approach
improves the recognition performance, there exists a dis-
crepancy between the entropy measure used during training
and the likelihood measure used to select the best candi-
date during recognition. Another group of methods makes
intensive use of the explicit phonological rules defined for

the specific language [2]. Also in this case, we don’t have

common criteria used for phonological rule selection and
recognition optimization. Yet another approach is to em-
ploy maximum likelihood (ML) in deriving multiple word
pronunciations using speech data for the specified words
[3]. For the RM task this approach achieves 18.4% word er-
ror rate reduction compared to mannualy generated single
baseform lexicon. However, with this approach, knowledge
about possible pronunciations can only be applied to the
words that are presented in the training speech database.
In order to extend this knowledge to new words, it is neces-
sary to collect acoustic data for these words. In our paper
we address the problem of word alternative pronunciation
derivation using exclusively their baseform pronunciation
and some set of rules. The set of rules is obtained by apply-
ing ML criterion to the acoustic data which include speech
samples of words that can be different from the words we
derive pronunciations for. We will refer to these rules as
statistically derived phonological rules. These rules are de-
fined as a set of transformations that can be applied to a
string of phonemes producing some allophonic variations of
the string.

In this study we focus on two issues: derivation of alter-
native pronunciation and methods to achieve word discrim-
ination for the expanded representation. We also introduce
the idea of segmental alternative which, unlike conventional
approaches to alternative pronunciation using phonemes as
unit, considers an acoustic realization to contain a legiti-
mate alternative pronunciation only when it deviates from
the baseform for a segment of more than a predetermined

threshold.

2. PHONOLOGICAL RULES DERIVATION

We define a phonological rule R(A = B) as a function that
Gy e, GM )
ybm, ... by}
Our goal is to find both A and R(A = B) for a given lexicon

through actual acoustic realizations of the words.

maps one string of phonemes A = {a1,az,. ..

to another string of phonemes B = {b1, b, ...

Assume we have a set of words, their pronunciation



baseforms(i.e. a sequence of phonems) and an associated
set of acoustic data containing examples for these words.
The acoustic data can be phonetically segmented and la-
beled (in terms of the baseform sequence) either manually
or automatically (by using, for example, a forced alignment
procedure). Our goal is to find a set of phonological rules
that can provide a reasonable explanation for the differences
between the baseform labels and the realized phoneme se-
quences. That is, we aim at finding a set A = {A;} contain-
ing the strings A; representing parts of the word baseform
pronunciations, and a set I' = {ng)} containing phono-
logical rules ng) : R(A: = Bl(.k)) for each of the string
A;. The number of the rules K; that can be applied to
the string A; is restricted (K; < K,,). Also, we account
only for phoneme strings A; and the corresponding map-
ping ng) that can significantly increase the likelihood for
the acoustic data representing the strings A;.

For every (partial) baseform string label A;, we collect
from the labeled acoustic data all segments corresponding
to the string A; to form aset X; = xgj), 1<y < J;. Assume
P(X|A;) is the total likelihood evaluated for all the acoustic
data from X; by measuring the likelihood scores P(z;|A;):

Ji

P(X|As) H (24]As) (2.1)

If we supplement a string A; representing part of the word
baseform with a set B; = {Bl(.k),l < k < K;} of its al-
ternative pronunciations Bl(.k) obtained after applying the
phonological rules ng), the total likelihood P(X|A;) would
change to P(X|A;, B),

Ji

H (z,]A;, By). (2.2)

P(X|A;, By)

Here P(z;|A:, B;) is the maximum value for the likelihood
scores P(z;|C;) measured over all possible strings C; that
include a baseform string A; and all alternative pronunci-
ations B, Tt is clear that P(X|Ay, Bi) > P(X|A;). The
more is the difference between P(X|A;, Bi) and P(X|A;)
the better is the set of rules ng) for the string A;. There-
fore, the optimal solution for phomnological rule derivation
can be defined in the following way: find a pair (Agpe, Dopt)
of an optimal set of [ strings in Aoy and an optimal set I'gpe
of the phonological rules applied to these strings that max-
imize the increase in the total likelihood over the strings
Ay

(Aopt, Dopt) = argmax (log P(X|A:, B:) —
(A7) Ay

(2.3)

log P(X|A:))

The task (2.3

first, over the set of rules I and then over the set of strings

) can be solved by sequential optimization,

A. A set of optimal rules B; € I' can be found separately for
each string A; because there are no common rules for the
different strings A;. So, by applying an exhaustive search
over all possible strings A; and deriving an optimal set of
rules B; for each of them we complete optimization of (2.3)
over the set of rules I'. After selecting the [ strings out of all
possible strings A; that give the largest increase in the total
likelihood we complete optimization over the set of strings
A. Optimization for each of the strings A; is accomplished

as follows:

Bepi(t) = argmax (log P(X|Aq, Bi) —

B

log P(X]A:))

(2.4)

Here the set B (1) contains the optimal set of the phono-

logical rules for the string A;. In fact we only need to

maximize P(X|A;, B;) because for any given A;, P(X|A;)
is a constant; i.e.

Ji

Bopi(1) = argmax Zlog P(z;]A;, Bi). (2.5)

B, =1

This task can be solved by using the K-means clustering

procedure. The speech samples z; are clustered accord-

ing to their closeness (expressed in terms of the likelihood)

to the string-templates represented by either a string A;

In this study the K

phoneme strings representing the K'-best string-centroids

or by alternative strings Bl(.k) c B;.

for each step of the K-means clustering procedure are se-
lected from the list of M phoneme strings(K < M). The
baseform string A; is always included as a template for the
K-means clustering procedure unconditionally. In turn the
list of the M phoneme strings - candidates for centroids is

compiled as follows:

e Implement N-best decoding for all acoustical sam-
ples representing a string A;. Pool decoded phoneme
strings from the N-best lists for all samples into a

common set C.

e Evaluate the total accumulated likelihood for each of
the decoded phoneme strings from the set C' over all

samples, where this string appears in the N-best list.

e Among all decoded phoneme strings select the M
ones that have maximum values of the total accu-
mulated likelihood. These strings represent a list of

the phoneme strings - candidates for templates.

The larger number K; of the phonological rules(phoneme
string clusters) the larger value of P(X|A;, Bi). But not

any larger number K; leads to the noticable increase in



P(X|A;, Bi). To avoid a high complexity of the derived

phonological rules we select a value K; as follows:

K; = arg min[log P(X|A;, By —log P(X|As, BF)) < A

0<K <Ky,

o (2.6)
Here P(X|As, BEK"‘)) and P(X|A;, BEK)) correspond to the
value of P(X|A;, B;) for the number of phonological rules
equal to K, and K respectively and A is a small positive
constant(A > 0). In particular, if K = 0 no phonological
rule is accepted because of a nonsignificant increase in the
likelihood they can provide.
All transformations constituting a rule are labelled with a
probability of their use, evaluated by counting a number of
speech samples assigned to a corresponding cluster.
In our experiments all possible strings A; of different lengths,
varying from 1 to 7, were examined to determine whether
some phonological rules could be applied to them. If the
number of speech examples representing a string is less than
some marginal value (in our experiments 30) no rule is ap-
plied. We consider 2 ways of rule application in the vocab-

ulary:

e The set of rules applied to a specified word should be
determined prior to recognition. Such kind of rules

we call static rules.

e The set of rules applied to a word is determined a pos-
teriori during recognition allowing to select an opti-
mal sequence of rules that maximizes the total likeli-
hood for the word. Such kind of rules we call dynamic

rules.

In our study static rules are applied to a word as follows.
First, a higher priority is given to the rules applied to the
longer strings A; within a word. Second, rules are applied
according to the string position within a word from left
to right without overlapping. Application of dynamic rules
implies use of a pronunciation network composed of all pos-
sible rules that can be applied to the given word. During
recognition an optimal sequence of the phoneme string is
selected according to the likelihood accounting for both the
probability of the proper rules generation and the speech
signal scores. By merging the pronunciation networks for
separate words we create a general pronunciation network
for decoding.

In our experiments, an isolated-word telephone channel spe-
ech PhoneBook database was used. Over 1,300 native speak-
ers of American English reflecting different pronunciation
styles and dialects were recorded in the database. The
database consists of the utterances of almost 8000 differ-

ent words. In our experiments 7500 words(10 utterances

per a word) were used for the phonological rules derivation
and another 500 words(5 utterances per a word) included
in the test set for recognition.

In the benchmark experiment, only single-word baseform
pronunciations were used for recognition of the vocabu-
lary of 500 words. These pronunciations were obtained by
Bell Labs text-to-speech system. 41 context independent
HMMs(3 states, 8 mixtures per a state) representing 40
phonemes and a silence model were trained using a differ-
ent from the PhoneBook database. The word error rate ob-
tained in this experiment was 10.0%. Applying static rules
allowed to improve the word error rate after introducing
a constraint on the minimum length of the strings A; (i.e.
rules can be applied only to strings of 3 or more phonemes).
The word error rate in this case was 9.5%. The word er-
ror rate of 9.3% was achieved by applying dynamic rules
without introducing any constraints on the string minimum
length. We found that a special constraint on the possible
string transformation can further improve the recognition
performance. This constrain allows application of only such
rules that do not modify the first and the last phoneme of
the string A;. Using this constraint, we obtained 9.1% word
error rate after applying static rules and 8.5% word error
rate after applying dynamic rules. The last result repre-
sents a 15% word error rate reduction in comparison to
the recognition experiment where only word baseforms are

used.

3. PRONUNCIATION NETWORKS
DISCRIMINATION

To enhance discrimination between competing words, weight
coefficients can be assigned to the elements (arcs, HMM
states) of the prinunciation networks. The optimality of
the weights is defined in the framework of discriminative
training via classification error minimization([4, 5]). In the
current study we consider weighting of HMM state scores.
Assume an output of the recognition system is represented
by the N phoneme strings which are the best N decoded

pronunciations for the R words:

R
N=) "N, (3.1)
r=1

Here N,, is the total number of the decoded alternative
pronunciations for the word v,.. A likelihood score g(X|v(rn))
for the n-th(l1 < n < N,,) decoded pronunciation o™ of

the word v, can be expressed as follows:

L(x{™) s()

g(X[oy = Y N0 (X [el) (3.2)

=1



Here L(v(rn) is a total number of the phonemes (subword
HMMs) in the pronunciation v(rn), S(1) is the total number
of states in the I-th HMM, p(sl)(X|v(rn)) is a likelihood score
estimated at the s-th state of the I-th phoneme of the pro-
nunciation v(rn)
§(X|v(rn)) takes on such a form:

. A weighted version of the likelihood score

L(x{™) 500

Z Z (X ol

(X o) cas(0f) + be(0)")]

(3.3)
Here a.(vy (n )) and b (vy (n )) represent multiplicative and ad-
ditive weighting terms for the state score Pis (X|v n)) Wei-
ght coefficients for all states of the word pronunciation net-
works are included in the common set W. A likelihood
score g(X|v,) for the word v, is estimated as a maximum
weighted likelihood score among the N, decoded pronun-

ciations for this word:

g(X|vy) = argmax §(X|v(rn)) (3.4)

1<n< Ny,
A classification error L(X|v,, W) for a speech sample X is
conditioned by the set of weight coefficients W and can be

evaluated as follows:

L(Xlor, W) = —g (X]oy) +
1 R
+ 1/nlog 57— > expl-n-g(X[og)],n > 0(3.5)
f=1
F#r

In our experiments we used likelihood weighting in the post-
processing stage of the recognition process. A state level
word segmentation was evaluated prior to score weighting.
Our attempts to include state weights during segmentation
revealed that such a procedure caused degradation in recog-
nition accuracy. The use of postprocessing score weighting
for a 500 word vocabulary decreased the word error rate
from 8.5% to 8.2%. For subsets of the 500 word vocabulary
consisting of 100 words each, the average word error rate
was reduced from 4.8% to 4.4% after the score weighting.
For subsets of the 500 word vocabulary consisting only of
20 words, postprocessing score weghting reduced the word
error rate from 1.8% to 1.2%. The last result corresponds

to 33% of word error rate reduction.

4. CONCLUSIONS

In this paper we have shown a possibility of using ML crite-
rion for the phonological rules derivation. Derived phono-
logical rules can be used to create pronunciation networks

for any new word. In the process of this research we have

found that knowledge of word baseform pronunciation is a
crucial factor in the construction of the high quality pronun-
ciation networks. Also different constraints (such as a mini-
mum allowable number of phonemes in the strings subjected
to the rule conversion or a ban on the boundary phoneme
deviation) can substantially improve the recognition rate.
The principles of phonological rule construction described
in this paper can be extended to continuous speech recog-
nition task.

Pronunciation networks constructed by applying statisti-
cally derived phonological rules can be further optimized by
using discriminative likelihood score weighting. Our studies
have shown that such a technique provides different levels
of the recognition rate improvement with most noticeable
results occurring in a small vocabulary task (of a few dozen
words). The use of discriminative weights is justified at the

postprocessing phase of recognition.
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