
STATISTICAL MODELING OF PRONUNCIATION AND PRODUCTION

VARIATIONS FOR SPEECH RECOGNITION

F. Korkmazskiy and B.-H. Juang

Lucent Technologies Bell Laboratories, Murray Hill, NJ 07974, USA

yelena@research.bell-labs.com

ABSTRACT

In this paper, we propose a procedure for training a

pronunciation network with criteria consistent with the op-

timality objectives for speech recognition systems. In par-

ticular, we describe a framework for using maximum likeli-

hood(ML) and minimum classi�cation error(MCE) criteria

for pronunciation network optimization. The ML criterion

is used to obtain an optimal structure for the pronunciation

network based on statistically-derived phonological rules.

Discrimination among di�erent pronunciation networks is

achieved by weighting of the pronunciation networks, opti-

mized by applying the MCE criterion. Experinent results

demonstrate improvements in speech recognition accuracy

after applying statistically derived phonological rules. It is

shown that the impact of the pronunciation network weight-

ing on the recognition performance is determined by the size

of the recognition vocabulary.

1. INTRODUCTION

Variations in pronunciation arise in natural speech due to

phonological and productional reasons. Incorporating al-

ternative pronunciations into a speech recognition decod-

ing network can potentially improve the recognition ac-

curacy. There has been extensive study in using decision

trees to represent pronunciation variations [1]. For the Re-

source Management(RM) task(991 words with perplexity 60

grammar) this approach achieves 96.3% word accuracy ver-

sus 93.4% word accuracy obtained with conventional single

baseform technique. A training procedure in this approach

is based on splitting a pronunciation tree node to increase

the degree of predictability, as measured by an entropy �g-

ure, of the subsequent phonemes. Although the approach

improves the recognition performance, there exists a dis-

crepancy between the entropy measure used during training

and the likelihood measure used to select the best candi-

date during recognition. Another group of methods makes

intensive use of the explicit phonological rules de�ned for

the speci�c language [2]. Also in this case, we don't have

common criteria used for phonological rule selection and

recognition optimization. Yet another approach is to em-

ploy maximum likelihood (ML) in deriving multiple word

pronunciations using speech data for the speci�ed words

[3]. For the RM task this approach achieves 18.4% word er-

ror rate reduction compared to mannualy generated single

baseform lexicon. However, with this approach, knowledge

about possible pronunciations can only be applied to the

words that are presented in the training speech database.

In order to extend this knowledge to new words, it is neces-

sary to collect acoustic data for these words. In our paper

we address the problem of word alternative pronunciation

derivation using exclusively their baseform pronunciation

and some set of rules. The set of rules is obtained by apply-

ing ML criterion to the acoustic data which include speech

samples of words that can be di�erent from the words we

derive pronunciations for. We will refer to these rules as

statistically derived phonological rules. These rules are de-

�ned as a set of transformations that can be applied to a

string of phonemes producing some allophonic variations of

the string.

In this study we focus on two issues: derivation of alter-

native pronunciation and methods to achieve word discrim-

ination for the expanded representation. We also introduce

the idea of segmental alternative which, unlike conventional

approaches to alternative pronunciation using phonemes as

unit, considers an acoustic realization to contain a legiti-

mate alternative pronunciation only when it deviates from

the baseform for a segment of more than a predetermined

threshold.

2. PHONOLOGICAL RULES DERIVATION

We de�ne a phonological rule R(A) B) as a function that

maps one string of phonemes A = fa1; a2; : : : ; am; : : : ; aMg

to another string of phonemes B = fb1; b2; : : : ; bm; : : : ; bNg.

Our goal is to �nd both A and R(A) B) for a given lexicon

through actual acoustic realizations of the words.

Assume we have a set of words, their pronunciation



baseforms(i.e. a sequence of phonems) and an associated

set of acoustic data containing examples for these words.

The acoustic data can be phonetically segmented and la-

beled (in terms of the baseform sequence) either manually

or automatically (by using, for example, a forced alignment

procedure). Our goal is to �nd a set of phonological rules

that can provide a reasonable explanation for the di�erences

between the baseform labels and the realized phoneme se-

quences. That is, we aim at �nding a set � = fAig contain-

ing the strings Ai representing parts of the word baseform

pronunciations, and a set � = fR
(k)
i g containing phono-

logical rules R
(k)
i : R(Ai ) B

(k)
i ) for each of the string

Ai. The number of the rules Ki that can be applied to

the string Ai is restricted (Ki � Km). Also, we account

only for phoneme strings Ai and the corresponding map-

ping R
(k)
i that can signi�cantly increase the likelihood for

the acoustic data representing the strings Ai.

For every (partial) baseform string label Ai, we collect

from the labeled acoustic data all segments corresponding

to the string Ai to form a set Xi = x
(j)
i ; 1 � j � Ji. Assume

P (XjAi) is the total likelihood evaluated for all the acoustic

data from Xi by measuring the likelihood scores P (xjjAi):

P (XjAi) =

J
iY

j=1

P (xjjAi) (2.1)

If we supplement a string Ai representing part of the word

baseform with a set Bi = fB
(k)
i ; 1 � k � Kig of its al-

ternative pronunciations B
(k)
i obtained after applying the

phonological rules R
(k)

i , the total likelihood P (XjAi) would

change to P (XjAi;Bi),

P (XjAi;Bi) =

J
iY

j=1

P (xjjAi;Bi): (2.2)

Here P (xjjAi;Bi) is the maximum value for the likelihood

scores P (xjjCi) measured over all possible strings Ci that

include a baseform string Ai and all alternative pronunci-

ations B
(k)
i . It is clear that P (XjAi;Bi) � P (XjAi). The

more is the di�erence between P (XjAi;Bi) and P (XjAi)

the better is the set of rules R
(k)

i for the string Ai. There-

fore, the optimal solution for phonological rule derivation

can be de�ned in the following way: �nd a pair (�opt;�opt)

of an optimal set of I strings in �opt and an optimal set �opt

of the phonological rules applied to these strings that max-

imize the increase in the total likelihood over the strings

Ai:

(�opt;�opt) = argmax
(�;�)

X

A
i

(log P (XjAi; Bi)� log P (XjAi))

(2.3)

The task (2.3) can be solved by sequential optimization,

�rst, over the set of rules � and then over the set of strings

�. A set of optimal rules Bi 2 � can be found separately for

each string Ai because there are no common rules for the

di�erent strings Ai. So, by applying an exhaustive search

over all possible strings Ai and deriving an optimal set of

rules Bi for each of them we complete optimization of (2.3)

over the set of rules �. After selecting the I strings out of all

possible strings Ai that give the largest increase in the total

likelihood we complete optimization over the set of strings

�. Optimization for each of the strings Ai is accomplished

as follows:

Bopt(i) = argmax
B
i

(log P (XjAi;Bi)� log P (XjAi))

(2.4)

Here the set Bopt(i) contains the optimal set of the phono-

logical rules for the string Ai. In fact we only need to

maximize P (XjAi;Bi) because for any given Ai, P (XjAi)

is a constant; i.e.

Bopt(i) = arg max
B
i

J
iX

j=1

log P (xjjAi;Bi): (2.5)

This task can be solved by using the K-means clustering

procedure. The speech samples xj are clustered accord-

ing to their closeness (expressed in terms of the likelihood)

to the string-templates represented by either a string Ai

or by alternative strings B
(k)
i 2 Bi. In this study the K

phoneme strings representing the K-best string-centroids

for each step of the K-means clustering procedure are se-

lected from the list of M phoneme strings(K < M). The

baseform string Ai is always included as a template for the

K-means clustering procedure unconditionally. In turn the

list of the M phoneme strings - candidates for centroids is

compiled as follows:

� Implement N -best decoding for all acoustical sam-

ples representing a string Ai. Pool decoded phoneme

strings from the N -best lists for all samples into a

common set C.

� Evaluate the total accumulated likelihood for each of

the decoded phoneme strings from the set C over all

samples, where this string appears in the N -best list.

� Among all decoded phoneme strings select the M

ones that have maximum values of the total accu-

mulated likelihood. These strings represent a list of

the phoneme strings - candidates for templates.

The larger number Ki of the phonological rules(phoneme

string clusters) the larger value of P (XjAi;Bi). But not

any larger number Ki leads to the noticable increase in



P (XjAi;Bi). To avoid a high complexity of the derived

phonological rules we select a value Ki as follows:

Ki =argmin
0�K�Km

[log P (XjAi;B
(Km)

i
)� log P (XjAi;B

(K)

i
)] < �

(2.6)

Here P (XjAi;B
(Km)

i ) and P (XjAi;B
(K)

i ) correspond to the

value of P (XjAi;Bi) for the number of phonological rules

equal to Km and K respectively and � is a small positive

constant(� > 0). In particular, if K = 0 no phonological

rule is accepted because of a nonsigni�cant increase in the

likelihood they can provide.

All transformations constituting a rule are labelled with a

probability of their use, evaluated by counting a number of

speech samples assigned to a corresponding cluster.

In our experiments all possible strings Ai of di�erent lengths,

varying from 1 to 7, were examined to determine whether

some phonological rules could be applied to them. If the

number of speech examples representing a string is less than

some marginal value (in our experiments 30) no rule is ap-

plied. We consider 2 ways of rule application in the vocab-

ulary:

� The set of rules applied to a speci�ed word should be

determined prior to recognition. Such kind of rules

we call static rules.

� The set of rules applied to a word is determined a pos-

teriori during recognition allowing to select an opti-

mal sequence of rules that maximizes the total likeli-

hood for the word. Such kind of rules we call dynamic

rules.

In our study static rules are applied to a word as follows.

First, a higher priority is given to the rules applied to the

longer strings Ai within a word. Second, rules are applied

according to the string position within a word from left

to right without overlapping. Application of dynamic rules

implies use of a pronunciation network composed of all pos-

sible rules that can be applied to the given word. During

recognition an optimal sequence of the phoneme string is

selected according to the likelihood accounting for both the

probability of the proper rules generation and the speech

signal scores. By merging the pronunciation networks for

separate words we create a general pronunciation network

for decoding.

In our experiments, an isolated-word telephone channel spe-

ech PhoneBook database was used. Over 1,300 native speak-

ers of American English re
ecting di�erent pronunciation

styles and dialects were recorded in the database. The

database consists of the utterances of almost 8000 di�er-

ent words. In our experiments 7500 words(10 utterances

per a word) were used for the phonological rules derivation

and another 500 words(5 utterances per a word) included

in the test set for recognition.

In the benchmark experiment, only single-word baseform

pronunciations were used for recognition of the vocabu-

lary of 500 words. These pronunciations were obtained by

Bell Labs text-to-speech system. 41 context independent

HMMs(3 states, 8 mixtures per a state) representing 40

phonemes and a silence model were trained using a di�er-

ent from the PhoneBook database. The word error rate ob-

tained in this experiment was 10.0%. Applying static rules

allowed to improve the word error rate after introducing

a constraint on the minimum length of the strings Ai (i.e.

rules can be applied only to strings of 3 or more phonemes).

The word error rate in this case was 9.5%. The word er-

ror rate of 9.3% was achieved by applying dynamic rules

without introducing any constraints on the string minimum

length. We found that a special constraint on the possible

string transformation can further improve the recognition

performance. This constrain allows application of only such

rules that do not modify the �rst and the last phoneme of

the string Ai. Using this constraint, we obtained 9.1% word

error rate after applying static rules and 8.5% word error

rate after applying dynamic rules. The last result repre-

sents a 15% word error rate reduction in comparison to

the recognition experiment where only word baseforms are

used.

3. PRONUNCIATION NETWORKS

DISCRIMINATION

To enhance discrimination between competing words, weight

coe�cients can be assigned to the elements (arcs, HMM

states) of the prinunciation networks. The optimality of

the weights is de�ned in the framework of discriminative

training via classi�cation error minimization([4, 5]). In the

current study we consider weighting of HMM state scores.

Assume an output of the recognition system is represented

by the N phoneme strings which are the best N decoded

pronunciations for the R words:

N =

RX

r=1

Nvr (3.1)

Here Nvr is the total number of the decoded alternative

pronunciations for the word vr. A likelihood score g(Xjv
(n)
r )

for the n-th(1 � n � Nvr ) decoded pronunciation v
(n)
r of

the word vr can be expressed as follows:

g(Xjv
(n)
r ) =

L(v
(n)
r

)X

l=1

S(l)X

s=1

�
(l)
s (Xjv

(n)
r ) (3.2)



Here L(v
(n)
r is a total number of the phonemes (subword

HMMs) in the pronunciation v
(n)
r , S(l) is the total number

of states in the l-th HMM, �
(l)
s (Xjv

(n)
r ) is a likelihood score

estimated at the s-th state of the l-th phoneme of the pro-

nunciation v
(n)
r . A weighted version of the likelihood score

~g(Xjv
(n)
r ) takes on such a form:

~g(Xjv
(n)
r ) =

L(v
(n)
r

)X

l=1

S(l)X

s=1

[�(l)s (Xjv
(n)
r ) � as(v

(n)
r ) + bs(v

(n)
r )]

(3.3)

Here as(v
(n)
r ) and bs(v

(n)
r ) represent multiplicative and ad-

ditive weighting terms for the state score �
(l)
s (Xjv

(n)
r ). Wei-

ght coe�cients for all states of the word pronunciation net-

works are included in the common set W . A likelihood

score g(Xjvr) for the word vr is estimated as a maximum

weighted likelihood score among the Nvr decoded pronun-

ciations for this word:

g(Xjvr) = arg max
1�n�Nvr

~g(Xjv
(n)
r ) (3.4)

A classi�cation error L(Xjvr;W ) for a speech sample X is

conditioned by the set of weight coe�cients W and can be

evaluated as follows:

L (Xjvr;W ) = �g (Xjvr) +

+ 1=� log
1

R� 1

RX

f=1
f 6=r

exp [�� � g (Xjvf)] ; � > 0(3.5)

In our experiments we used likelihood weighting in the post-

processing stage of the recognition process. A state level

word segmentation was evaluated prior to score weighting.

Our attempts to include state weights during segmentation

revealed that such a procedure caused degradation in recog-

nition accuracy. The use of postprocessing score weighting

for a 500 word vocabulary decreased the word error rate

from 8.5% to 8.2%. For subsets of the 500 word vocabulary

consisting of 100 words each, the average word error rate

was reduced from 4.8% to 4.4% after the score weighting.

For subsets of the 500 word vocabulary consisting only of

20 words, postprocessing score weghting reduced the word

error rate from 1.8% to 1.2%. The last result corresponds

to 33% of word error rate reduction.

4. CONCLUSIONS

In this paper we have shown a possibility of using ML crite-

rion for the phonological rules derivation. Derived phono-

logical rules can be used to create pronunciation networks

for any new word. In the process of this research we have

found that knowledge of word baseform pronunciation is a

crucial factor in the construction of the high quality pronun-

ciation networks. Also di�erent constraints (such as a mini-

mum allowable number of phonemes in the strings subjected

to the rule conversion or a ban on the boundary phoneme

deviation) can substantially improve the recognition rate.

The principles of phonological rule construction described

in this paper can be extended to continuous speech recog-

nition task.

Pronunciation networks constructed by applying statisti-

cally derived phonological rules can be further optimized by

using discriminative likelihood score weighting. Our studies

have shown that such a technique provides di�erent levels

of the recognition rate improvement with most noticeable

results occurring in a small vocabulary task (of a few dozen

words). The use of discriminative weights is justi�ed at the

postprocessing phase of recognition.
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