ROBUST AUTOMATIC CONTINUOUS-SPEECH RECOGNITION BASED ON A
VOICED-UNVOICED DECISION

Hesham Tolba Douglas O’Shaughnessy
INRS-Teélecommunications, Universitdu Qebec
16 Place du Commerce, Verduiletdes-Soeurs),

Québec, H3E 1H6, Canada
{tolba, dougd@inrs-telecom.uquebec.ca

ABSTRACT

2000 -
1000 -
0
-1000

In this paper, the implementation of a robust front-end to be used
for a large-vocabulary Continuous Speech Recognition (CSR)

Magnitude

system based on a Voiced-Unvoiced (V-U) decision has been ad- ~2000 ‘ i i i i
dressed. Our approach is based on the separation of the speec ° 8 Y rime e : 8
signal into voiced and unvoiced components. Consequently, o ~¥ P~
speech enhancement can be achieved through processing of the ™[~ 7 |
voiced and the unvoiced components separately. Enhancemen” 5" ““' — ]
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of the voiced component is performed using an adaptive comb
filtering, whereas the unvoiced component is enhanced using the
modified spectral subtraction approach. We proved via experi-
ments that the proposed CSR system is robust in additive noisy
environments (SNR down to 0 dB). ©

T
r

o
o
2
-
s
2
N
N
2

~

V-U Value
o -
‘
i

|
'S
o
oL
o
-

15 2 25
Time (secs)

1. INTRODUCTION Figure 1: (a) The time-domain waveform of the speech sentence
. . - “She had your dark suit in greasy wash water all yearttered

The robustness issue in speech recognition can take on a broa%y a female speaker from the TIMIT database, (b) Pitch con-
range of problems depending on the environment, channel dIS'tour (Hz) of the speech sentence shown in (a) estimated using a

o erononce o et e Shoesy{me-domainalgorihm, 1) VU Cassfcaton or e same sen-
9 p 9 Y P tence shown in (a) based on the pitch detection algorithm, all as

recognition (ASR) systemin low SNR environments is explored. a function of time.
Two types of noises, Gaussian noise and uniform noise, are con-
sidered for studying such a degradation. In both cases, noise is

added artificially to the speech signal under different SNR levels. ) ) ] ] ) )
This paper will be organized into the following sections. Section

The whole system was designed for noise suppression in con-2 presents an introduction about the architecture of the proposed
taminated speech. Our design is based on the separation opeech recognition system and the different parts of the front-end
speech signals into a voiced or an unvoiced part. A V-U deci- of such arecognizer. In section 3.5, we introduce the feature vec-
sion was incorporated in the front-end of a large vocabulary ASR tor that will be used throughout our experiments in order to test
to classify the speech signal; then these two components werethe proposed ASR system. Next, the database and the platform
enhanced separately. Our speech enhancement system providebat have been used throughout our experiments are presented in
information on the pitch, the spectral envelope and the voicing section 3. Following this, experimental results that demonstrate
state of each speech segment. We estimate these parameters atfie effectiveness of our proposed approach for recognition are
enhance the speech by the modification of such parameters inpresented in section 4. Finally, in section 5 we conclude and
order to account for the presence of the noise which contami- discuss our results.

nated the speech signal. To remove the background noise, the
voiced component is enhanced usingAstaptive Comb Filter
(ACF) [9], whereas the unvoiced component is processed using

aModified Spectral SubtractiogfMSS) [2, 3] approach. 2. V-U-BASED FRONT-END

Results indicated that the enhanced speech using this proposed@he novel proposed ASR system consists of six major parts:
approach is virtually indistinguishable from the original clean voiced-unvoiced classification, enhancement of both voiced and
speech over a wide range of SNRs, i.e., this approach is robustunvoiced components, feature extraction, acoustic/phonetic de-
to additive noise. In addition, such an approach for enhancementcoding, lexical access, and syntactic analysis. Operations of
provided higher recognition accuracy even at low SNRs. these parts will be described in the following subsections.
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after noise removal using the proposed algorithim= 15 , 8 =

Figure 2: Pitch contour (Hz) of the speech sentence of Fig. 1 for 0.0001), all as a function of time.

(a) clean speech, (b)-(d) speech contaminated by AGN (average
SNR: 27.4716, 16.8301, 11.933 and 6.2125 dB respectively), es-

timated using a robust time-domain pitch detector. pitch detector to perform the enhancement of the voiced part of

the signal, we decided to choose a V-U classifier which is based
on the robust pitch detection algorithm described in [10]. Af-
ter successfully determining the pitch period, a voiced-unvoiced
decision was taken, on a frame-by-frame basis, based on a com-
Enhancement of the speech signal is achieved by enhancing botiparison of the correlation values with an adaptive thresfiglg

the voiced and the unvoiced components of the speech signaldependent on the level of the correlation between adjacent pitch
separately. The voiced component is enhanced by the use ofperiods found for the current segment at that instant [10]. The
anadaptive comb filte[9], whereas the unvoiced component is result of such a classification is shown in Fig. 1. Itis clear from
processed using thmodified spectral subtractioapproach [2]. this figure that the V-U classification is very accurate even for
The implementation of such an enhancer required three mainboundary segments.

processing steps prior to the main voiced and unvoiced enhance-

2.1. Speech Enhancement

ment processes. These steps are: an accurate estimation of the 3. EXPERIMENTS
noise signal, a pitch detector and a V-U classifier. Each of the
prior steps will now be discussed. 3.1. Database

In the following experiments the TIMIT database [5] was used.
To simulate two different types of noise environments, both
A pitch detector is necessary for one important reason, which is White Gaussian and uniform noise were added artificially to the
the use of the ACF in our design. The pitch detector used was clean speech. To study the effect of such noises on the recogni-
based on a time-similarity measure, such as the one introduced irtion accuracy of the ASR system that we evaluated, the reference
[10]. A typical example of the pitch contour obtained using this templates for all tests were taken from clean speech on the as-
approach when applied on a TIMIT database speech file utteredsumption that na-priori noise characteristics knowledge was

by a female is shown in Fig. 1. Moreover, when this algorithm available. Several separate testing sets were chosen from the
was applied to this database after adding the Gaussian and thevailable database to evaluate the recognition system. Then, the
uniform noise, it was found that this algorithm is very robust to noise signal was estimated by the detection of the speech pauses
such noise and the pitch period calculated is accurate and robusto evaluate segments of pure noise. Several methods have been
to these noises down to about 0 dB, with a slight change in the proposed in the literature in order to estimate the noise from the
estimated pitch. speech corrupted signal [7].

2.2. Pitch Detection

2.3. V-U Classification 3.2. Noise Estimation and SNR Evaluation

The classification of the speech signal into voiced and unvoiced After examining many speech files in the TIMIT database, it was
components provides a preliminary acoustic segmentation of found that the first incoming speech samples of a recording are
speech, which is important in our design for both speech en- related to the noise only. Hence, in our experiments, we esti-
hancement and recognition. Different approaches for V-U classi- mated the noise signal during the first 100 ms of each utterance
fications were described, studied and compared in [12]. Becauseon a frame-by-frame basis. Then, the average signal energy cal-
we deal with noisy speech and the ACF used requires a robustculated for such a duration is used as the first estimation of the



noise power. After 200 ms, the noise level in a certain subband found that the quality of the enhanced speech is increased; how-
is estimated by a statistical analysis of a segment of the magni-ever some residual noise remains.

tude spectral envelope. Given a spectral envelope and the corre-

sponding distribution density function in a certain subband, the

most frequently occurring spectral magnitude value is taken as3.5. Parameterization

an estimation for the noise level inside this band. These noise

levels for different subbands are squared and then the average othe baseline system used for the recognition task was a mono-
these squared values gives the noise power estimate. The noise bi- and tri-phone Gaussian mixture hidden Markov model
power is computed using this histogram method every 100 ms.(HMM) system. In order to recognize the continuous speech
More details about such a technique can be found in [7]. Then, data that has been enhanced as mentioned above, this data
the SNR measure, which is based on a frame-by-frame measureis parameterized [6]. 12 Mel frequency cepstral coefficients
ment, followed by an averaging over a speech utterance, is usedMFCCs) are calculated on a 30-msec Hamming window ad-
to calculate the SNR per utterance. Moreover, these values arevanced by 10 msec each frame. Then, an FFT is performed
then averaged all over the subget of the TIMIT database to  to calculate a magnitude spectrum for the frame, which is av-

calculate the average SNR for this database. eraged into 20 triangular bins arranged at equal Mel-frequency
intervals. Finally, a cosine transform is applied to such data to
3.3. Parameter Tuning calculate the 12 MFCCs. Moreover, the normalized log energy

is also found, which is added to the 12 MFCCs to form a 13-

A series of experiments at different SNRs, which vary between dimensional (static) vector. This static vector is then expanded to
30 and 0 dB, have been done in order to determine the optimumproduce a 26-dimensional (static+dynamic) vector upon which
value of the parameters of the MSS speech enhancement systemhe HMMs, that model the speech subword units, were trained.
a andg [2], that had been used in the front-end in these exper- The static vector is extended by appending the first order dif-
iments. Two types of noise, white Gaussian and Uniform noise, ference of the static coefficients. All recognition tests were car-
were alternatively added to the clean speech. The valuesl0 ried out on the test subset of the TIMIT database. This test set
andg = 0.0001 were found to be optimal in such experiments consists ofl 10 sentences. The data in the TIMIT database was
using the TIMIT database in order to obtain a more enhanced recorded in a clean environment.

signal without degrading the naturalness of the speech.

3.4. Speech Reconstruction 4. EVALUATION OF THE V-U-BASED RECOGNIZER

In order to test our algorithm, the enhanced speech signal is INNOISE

transformed in the time domain, then it is reconstructed. In gen- . i ) i
eral, reconstruction of the speech signal can be performed usPPlying the overall proposed recognizer to the noisy version of

ing the Overlap Add (OLA) procedure described in [1] or the the TIMI_T database, i.e., f’;\fter adding b_oth the Gaussian _and Uni-
weighted OLA procedure [11, 4]. form noise to the clean signal under dn‘f_erent SNRs, whlch_ vary
between almost 0 and 30 dB, and carrying on some experiments
The speech reconstruction (synthesis) algorithm adopted in ourproved that the recognition accuracy has increased significantly,
experiments is an OLA algorithm described in [1] using a tri- compared to the HTK baseline system.
angular window. After obtaining the enhanced spectrum of the
speech signal, the original noisy phase of the signal spectrumThe results of our evaluation of a subset of the entire database are
is combined with the enhanced magnitude of the signal, then listed in Tables 2 and 4. These tables show the different recog-
an IFFT is applied to such a signal to obtain the enhanced sig- nition error rates for a subset of the TIMIT database when tests
nal in the time domain. This time-domain signal is then win- were performed using single mixture triphone acoustic models
dowed with a triangular window of length/, = 2N, where  and a word-pair language model using our proposed algorithm.
N; is the synthesis-window size atM is the analysis-window  The substitution, deletion and insertion percentage errors were
size. This windowed segment is then combined with the over- defined respectively agisus, €per anderns, Whereas the aver-
lapping portions from neighboring speech segments. Since theage word accuracy rate was represented’py,.

distance between successive speech segmeMq39 msec in
our experiments), the triangular windows have a 50% overlap In order to evaluate the performance of our proposed CSR sys-
(15 msec). The triangular window was found to work well in €M, we compared the performance of the V-U-based HTK rec-

our experiments; however, this procedure can be generalized to®9nizer to the baseline HTK recognition system. Tables 1 and
include other window functions. 3 illustrate the recognition performance obtained using the base-

line system when both Gaussian and uniform noises were added
Fig. 3 illustrates a typical example of a clean speech utteranceto the clean speech for different SNR levels which vary between
uttered by a female selected from the suldgétfrom the TIMIT from almost 4 to 20 dB. It is clear from these results that the
database, the same utterance when contaminated by both the ad#U-based HTK recognizer outperforms the baseline HTK sys-
ditive white Gaussian noise and the enhanced version of suchtem and renders the recognition process more robust to additive
an utterance obtained using the above mentioned enhancementhannel noise. The relative changes in the word correctness rate,
algorithm and reconstructed using the OLA algorithm. This fig- Cyw 4, when using our proposed system for testing on a sub-
ure indicates that considerable noise rejection has been achievedset of the TIMIT database using triphones, the relative changes
The amount of the rejected noise depends on several factorsin Cw .4 are 7.23%, 13% and 23.61% when combating AGN
These factors include: the kind of the noise to be removed; thefor 19.30 dB, 15.91 dB and 11.50 dB SNR levels and 8.39%,
amount of the SNR level; the optimal choice of the threshold 12.22% and 29.81% when combating AUN for 19.58 dB, 15.01
parametersq and3. Through informal listening testing, it was  dB and 10.68 dB SNR levels respectively.



SNR esun(%)  €pet(%)  €ms(%)  Cwra(%) SNR esub(%0)  €epet(%)  €ms(%)  Cwra(%)
19.30dB 24.09 11.05 0.94 64.86 19.58 dB 25.44 11.26 1.36 63.30
15.91dB 27.32 12.51 0.83 60.17 15.01dB 27.22 13.14 1.04 59.65
11.50dB 31.28 18.35 1.15 50.36 10.68 dB 32.74 18.98 1.67 48.28
7.58 dB 40.77 2951 0.73 29.72 8.38 dB 39.10 26.69 1.15 34.20
4.44 dB 43.80 44.32 0.10 11.89 6.90 dB 42.23 31.28 0.52 26.49
5.85 dB 44.11 36.39 0.31 19.50

Table 1: Baseline HTK recognition performance versus SNR us- || 5.00 dB 43.59 41.40 0.21 15.01

ing single mixture triphones and a subset of the TIMIT database

when contaminated by AGN.

Table 3: Baseline HTK recognition performance versus SNR us-
ing single mixture triphones and a subset of the TIMIT database
when contaminated by AUN.

SNR esub()  epet(P)  €1ns(B)  Cwra(%)

19.30dB 23.04 7.40 2.40 69.55
15.92dB|| 25.23 6.78 2.82 67.99 SNR esub(%)  epet()  €1ns (%) Cwra(%)
11.50 dB 31.60 6.15 4.59 62.25 19.58 dB 24.09 7.30 3.02 68.61
7.58 dB 33.68 7.40 5.74 58.92 15.01 dB 26.17 6.88 2.82 66.94
4.44 dB 47.34 10.32 6.78 42.34 10.68 dB 30.34 6.88 4.69 62.67
8.38 dB 32.33 6.57 6.05 61.11
Table 2: V-U-Based HTK recognition performance versus SNR || 6.90 dB 38.48 6.88 7.09 54.64
using single mixture triphones and a subset of the TIMIT || 5.85 dB 41.40 8.24 6.36 50.36
database when contaminated by AGN. 5.00 dB 44.73 8.97 6.57 46.30

Table 4: V-U-Based HTK recognition performance versus SNR
using single mixture triphones and a subset of the TIMIT

5. CONCLUSION database when contaminated by AUN.

In this paper, a new robust ASR system based on V-U classifi-
cation has been described. This was realized by the inclusion

of such a decision in the pre-processing enhancement algorithm
used in the recognition process. We proved via experiments that
the proposed CSR system is robust in additive noisy environ- [6]
ments and outperforms the baseline recognition system in AGN
and AUN environments.

We are currently continuing the effort towards the improvement

of the performance of the designed system by modifying the ap-[7]
proach that is used for the enhancement of the unvoiced compo-
nent by the use of an iterative technique such as Wiener filtering.
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