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ABSTRACT

In this paper, the implementation of a robust front-end to be used
for a large-vocabulary Continuous Speech Recognition (CSR)
system based on a Voiced-Unvoiced (V-U) decision has been ad-
dressed. Our approach is based on the separation of the speech
signal into voiced and unvoiced components. Consequently,
speech enhancement can be achieved through processing of the
voiced and the unvoiced components separately. Enhancement
of the voiced component is performed using an adaptive comb
filtering, whereas the unvoiced component is enhanced using the
modified spectral subtraction approach. We proved via experi-
ments that the proposed CSR system is robust in additive noisy
environments (SNR down to 0 dB).

1. INTRODUCTION

The robustness issue in speech recognition can take on a broad
range of problems depending on the environment, channel dis-
tortion and stress [8]. In this paper, the degradation of the
recognition performance of a large vocabulary automatic speech
recognition (ASR) system in low SNR environments is explored.
Two types of noises, Gaussian noise and uniform noise, are con-
sidered for studying such a degradation. In both cases, noise is
added artificially to the speech signal under different SNR levels.

The whole system was designed for noise suppression in con-
taminated speech. Our design is based on the separation of
speech signals into a voiced or an unvoiced part. A V-U deci-
sion was incorporated in the front-end of a large vocabulary ASR
to classify the speech signal; then these two components were
enhanced separately. Our speech enhancement system provides
information on the pitch, the spectral envelope and the voicing
state of each speech segment. We estimate these parameters and
enhance the speech by the modification of such parameters in
order to account for the presence of the noise which contami-
nated the speech signal. To remove the background noise, the
voiced component is enhanced using anAdaptive Comb Filter
(ACF) [9], whereas the unvoiced component is processed using
aModified Spectral Subtraction(MSS) [2, 3] approach.

Results indicated that the enhanced speech using this proposed
approach is virtually indistinguishable from the original clean
speech over a wide range of SNRs, i.e., this approach is robust
to additive noise. In addition, such an approach for enhancement
provided higher recognition accuracy even at low SNRs.
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Figure 1: (a) The time-domain waveform of the speech sentence
“She had your dark suit in greasy wash water all year”uttered
by a female speaker from the TIMIT database, (b) Pitch con-
tour (Hz) of the speech sentence shown in (a) estimated using a
time-domain algorithm, (c) V-U Classification for the same sen-
tence shown in (a) based on the pitch detection algorithm, all as
a function of time.

This paper will be organized into the following sections. Section
2 presents an introduction about the architecture of the proposed
speech recognition system and the different parts of the front-end
of such a recognizer. In section 3.5, we introduce the feature vec-
tor that will be used throughout our experiments in order to test
the proposed ASR system. Next, the database and the platform
that have been used throughout our experiments are presented in
section 3. Following this, experimental results that demonstrate
the effectiveness of our proposed approach for recognition are
presented in section 4. Finally, in section 5 we conclude and
discuss our results.

2. V-U-BASED FRONT-END

The novel proposed ASR system consists of six major parts:
voiced-unvoiced classification, enhancement of both voiced and
unvoiced components, feature extraction, acoustic/phonetic de-
coding, lexical access, and syntactic analysis. Operations of
these parts will be described in the following subsections.
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Figure 2: Pitch contour (Hz) of the speech sentence of Fig. 1 for
(a) clean speech, (b)-(d) speech contaminated by AGN (average
SNR: 27.4716, 16.8301, 11.933 and 6.2125 dB respectively), es-
timated using a robust time-domain pitch detector.

2.1. Speech Enhancement

Enhancement of the speech signal is achieved by enhancing both
the voiced and the unvoiced components of the speech signal
separately. The voiced component is enhanced by the use of
anadaptive comb filter[9], whereas the unvoiced component is
processed using themodified spectral subtractionapproach [2].
The implementation of such an enhancer required three main
processing steps prior to the main voiced and unvoiced enhance-
ment processes. These steps are: an accurate estimation of the
noise signal, a pitch detector and a V-U classifier. Each of the
prior steps will now be discussed.

2.2. Pitch Detection

A pitch detector is necessary for one important reason, which is
the use of the ACF in our design. The pitch detector used was
based on a time-similarity measure, such as the one introduced in
[10]. A typical example of the pitch contour obtained using this
approach when applied on a TIMIT database speech file uttered
by a female is shown in Fig. 1. Moreover, when this algorithm
was applied to this database after adding the Gaussian and the
uniform noise, it was found that this algorithm is very robust to
such noise and the pitch period calculated is accurate and robust
to these noises down to about 0 dB, with a slight change in the
estimated pitch.

2.3. V-U Classification

The classification of the speech signal into voiced and unvoiced
components provides a preliminary acoustic segmentation of
speech, which is important in our design for both speech en-
hancement and recognition. Different approaches for V-U classi-
fications were described, studied and compared in [12]. Because
we deal with noisy speech and the ACF used requires a robust
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Figure 3: (a) The time-domain waveform of the same speech
sentence shown in Fig. 1, (b) Noisy version of the same speech
sentence as in (a), with AGN, and the average SNR is 6.21253
dB, (c) Enhanced version of the same speech sentence as in (b)
after noise removal using the proposed algorithm (� = 15 , � =
0:0001), all as a function of time.

pitch detector to perform the enhancement of the voiced part of
the signal, we decided to choose a V-U classifier which is based
on the robust pitch detection algorithm described in [10]. Af-
ter successfully determining the pitch period, a voiced-unvoiced
decision was taken, on a frame-by-frame basis, based on a com-
parison of the correlation values with an adaptive thresholdT (t)
dependent on the level of the correlation between adjacent pitch
periods found for the current segment at that instant [10]. The
result of such a classification is shown in Fig. 1. It is clear from
this figure that the V-U classification is very accurate even for
boundary segments.

3. EXPERIMENTS

3.1. Database

In the following experiments the TIMIT database [5] was used.
To simulate two different types of noise environments, both
White Gaussian and uniform noise were added artificially to the
clean speech. To study the effect of such noises on the recogni-
tion accuracy of the ASR system that we evaluated, the reference
templates for all tests were taken from clean speech on the as-
sumption that noa-priori noise characteristics knowledge was
available. Several separate testing sets were chosen from the
available database to evaluate the recognition system. Then, the
noise signal was estimated by the detection of the speech pauses
to evaluate segments of pure noise. Several methods have been
proposed in the literature in order to estimate the noise from the
speech corrupted signal [7].

3.2. Noise Estimation and SNR Evaluation

After examining many speech files in the TIMIT database, it was
found that the first incoming speech samples of a recording are
related to the noise only. Hence, in our experiments, we esti-
mated the noise signal during the first 100 ms of each utterance
on a frame-by-frame basis. Then, the average signal energy cal-
culated for such a duration is used as the first estimation of the



noise power. After 200 ms, the noise level in a certain subband
is estimated by a statistical analysis of a segment of the magni-
tude spectral envelope. Given a spectral envelope and the corre-
sponding distribution density function in a certain subband, the
most frequently occurring spectral magnitude value is taken as
an estimation for the noise level inside this band. These noise
levels for different subbands are squared and then the average of
these squared values gives the noise power estimate. The noise
power is computed using this histogram method every 100 ms.
More details about such a technique can be found in [7]. Then,
the SNR measure, which is based on a frame-by-frame measure-
ment, followed by an averaging over a speech utterance, is used
to calculate the SNR per utterance. Moreover, these values are
then averaged all over the subsetdr1 of the TIMIT database to
calculate the average SNR for this database.

3.3. Parameter Tuning

A series of experiments at different SNRs, which vary between
30 and 0 dB, have been done in order to determine the optimum
value of the parameters of the MSS speech enhancement system,
� and� [2], that had been used in the front-end in these exper-
iments. Two types of noise, white Gaussian and Uniform noise,
were alternatively added to the clean speech. The values� = 10
and� = 0:0001 were found to be optimal in such experiments
using the TIMIT database in order to obtain a more enhanced
signal without degrading the naturalness of the speech.

3.4. Speech Reconstruction

In order to test our algorithm, the enhanced speech signal is
transformed in the time domain, then it is reconstructed. In gen-
eral, reconstruction of the speech signal can be performed us-
ing the Overlap Add (OLA) procedure described in [1] or the
weighted OLA procedure [11, 4].

The speech reconstruction (synthesis) algorithm adopted in our
experiments is an OLA algorithm described in [1] using a tri-
angular window. After obtaining the enhanced spectrum of the
speech signal, the original noisy phase of the signal spectrum
is combined with the enhanced magnitude of the signal, then
an IFFT is applied to such a signal to obtain the enhanced sig-
nal in the time domain. This time-domain signal is then win-
dowed with a triangular window of lengthNs = 2N , where
Ns is the synthesis-window size andN is the analysis-window
size. This windowed segment is then combined with the over-
lapping portions from neighboring speech segments. Since the
distance between successive speech segments isN (30 msec in
our experiments), the triangular windows have a 50% overlap
(15 msec). The triangular window was found to work well in
our experiments; however, this procedure can be generalized to
include other window functions.

Fig. 3 illustrates a typical example of a clean speech utterance
uttered by a female selected from the subsetdr1 from the TIMIT
database, the same utterance when contaminated by both the ad-
ditive white Gaussian noise and the enhanced version of such
an utterance obtained using the above mentioned enhancement
algorithm and reconstructed using the OLA algorithm. This fig-
ure indicates that considerable noise rejection has been achieved.
The amount of the rejected noise depends on several factors.
These factors include: the kind of the noise to be removed; the
amount of the SNR level; the optimal choice of the threshold
parameters,� and�. Through informal listening testing, it was

found that the quality of the enhanced speech is increased; how-
ever some residual noise remains.

3.5. Parameterization

The baseline system used for the recognition task was a mono-
, bi- and tri-phone Gaussian mixture hidden Markov model
(HMM) system. In order to recognize the continuous speech
data that has been enhanced as mentioned above, this data
is parameterized [6]. 12 Mel frequency cepstral coefficients
(MFCCs) are calculated on a 30-msec Hamming window ad-
vanced by 10 msec each frame. Then, an FFT is performed
to calculate a magnitude spectrum for the frame, which is av-
eraged into 20 triangular bins arranged at equal Mel-frequency
intervals. Finally, a cosine transform is applied to such data to
calculate the 12 MFCCs. Moreover, the normalized log energy
is also found, which is added to the 12 MFCCs to form a 13-
dimensional (static) vector. This static vector is then expanded to
produce a 26-dimensional (static+dynamic) vector upon which
the HMMs, that model the speech subword units, were trained.
The static vector is extended by appending the first order dif-
ference of the static coefficients. All recognition tests were car-
ried out on the test subset of the TIMIT database. This test set
consists of110 sentences. The data in the TIMIT database was
recorded in a clean environment.

4. EVALUATION OF THE V-U-BASED RECOGNIZER
IN NOISE

Applying the overall proposed recognizer to the noisy version of
the TIMIT database, i.e., after adding both the Gaussian and Uni-
form noise to the clean signal under different SNRs, which vary
between almost 0 and 30 dB, and carrying on some experiments
proved that the recognition accuracy has increased significantly,
compared to the HTK baseline system.

The results of our evaluation of a subset of the entire database are
listed in Tables 2 and 4. These tables show the different recog-
nition error rates for a subset of the TIMIT database when tests
were performed using single mixture triphone acoustic models
and a word-pair language model using our proposed algorithm.
The substitution, deletion and insertion percentage errors were
defined respectively as:�Sub, �Del and�Ins, whereas the aver-
age word accuracy rate was represented byCPh.

In order to evaluate the performance of our proposed CSR sys-
tem, we compared the performance of the V-U-based HTK rec-
ognizer to the baseline HTK recognition system. Tables 1 and
3 illustrate the recognition performance obtained using the base-
line system when both Gaussian and uniform noises were added
to the clean speech for different SNR levels which vary between
from almost 4 to 20 dB. It is clear from these results that the
V-U-based HTK recognizer outperforms the baseline HTK sys-
tem and renders the recognition process more robust to additive
channel noise. The relative changes in the word correctness rate,
CWrd, when using our proposed system for testing on a sub-
set of the TIMIT database using triphones, the relative changes
in CWrd are 7.23%, 13% and 23.61% when combating AGN
for 19.30 dB, 15.91 dB and 11.50 dB SNR levels and 8.39%,
12.22% and 29.81% when combating AUN for 19.58 dB, 15.01
dB and 10.68 dB SNR levels respectively.



SNR �Sub(%) �Del(%) �Ins(%) CWrd(%)
19.30 dB 24.09 11.05 0.94 64.86
15.91 dB 27.32 12.51 0.83 60.17
11.50 dB 31.28 18.35 1.15 50.36
7.58 dB 40.77 29.51 0.73 29.72
4.44 dB 43.80 44.32 0.10 11.89

Table 1: Baseline HTK recognition performance versus SNR us-
ing single mixture triphones and a subset of the TIMIT database
when contaminated by AGN.

SNR �Sub(%) �Del(%) �Ins(%) CWrd(%)
19.30 dB 23.04 7.40 2.40 69.55
15.92 dB 25.23 6.78 2.82 67.99
11.50 dB 31.60 6.15 4.59 62.25
7.58 dB 33.68 7.40 5.74 58.92
4.44 dB 47.34 10.32 6.78 42.34

Table 2: V-U-Based HTK recognition performance versus SNR
using single mixture triphones and a subset of the TIMIT
database when contaminated by AGN.

5. CONCLUSION

In this paper, a new robust ASR system based on V-U classifi-
cation has been described. This was realized by the inclusion
of such a decision in the pre-processing enhancement algorithm
used in the recognition process. We proved via experiments that
the proposed CSR system is robust in additive noisy environ-
ments and outperforms the baseline recognition system in AGN
and AUN environments.

We are currently continuing the effort towards the improvement
of the performance of the designed system by modifying the ap-
proach that is used for the enhancement of the unvoiced compo-
nent by the use of an iterative technique such as Wiener filtering.
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