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ABSTRACT where the\;’s represent the individual speaker models in the sys-
tem. For speaker verification we should accept the identity claim

A new discriminant speaker model is introduced in this paper.it the probability of the target speaker is greater than the proba-
The model is text dependent and relies on characterising speal%”ity of an impostor speaker:

ers in terms of the angular distance between “projection vectors”,

which allow good discrimination between individual speakers. ) accept ifg(X) = % >1
The projection models require only little enrolment data to be Decide ) . Imp @
available per target speaker, but at the same time require a set reject  otherwise

of “cohort speakers” to be available for which a relatively large The a posterior class probabilities may in practise be estimated
amount of training speech is available per cohort speaker. Thalirectly usingdiscriminativemodels (e.g. neural networks), which
projection model technique is evaluated on the Gandalf databasgodel the decision surfaces of the classification problem, or they
and compared to conventional Gaussian Mixture Models (GMMsay be estimated indirectly usingon-discriminativemodels,

Itis found that the projection models require less storage per tarwhich separately model the Probability Density Functions (pdf’s)
get speaker, while at the same time achieving lower error ratescharacterising the individual classes. In the last case, the a poste-

particularly when applied for speaker identification and recogni-rior class probabilities are then computed from the pdf estimates
tion under mismatched conditions. using Bayes rule:

P(/\i)P(X|/\i)
(%) ®)

Speaker recognition is the generic term used for two related clasplscnmlnatlve models have the advantage that the modelling is

R o . focused on feature variations which are particularly relevant for
sification problemsspeaker verificatiopwhere the task is to ver- the classification problem. Non-discriminative models, however
ify a claimed speaker identity (2-way classification) ape:aker are typicall easiepr to traiﬁ when the number of differént classe’s
identificationwhere the task is to identify a speaker from a group . ypically L : .

e . is large, because the modelling problem is decomposed into a
of known speakers (N-way classification). An automatic speakernurnber of simpler subproblems, namely the construction of ap-
recognition system can be characterised in terms of proximations for the pdf'sp(X|\;), characterising the individ-

e The classification error rate. ual classes. When non-discriminative models are used, speaker
identification decisions can in practise be based directly on the
class conditional likelihoodg(X|A;), sincep(X) is common

e The number of free parameters. to all speakers. For speaker verification it is here necessary to

The classification error rate is generally important for speakerSPecifically construct a “speaker model” for the impostor class.

recognition to be useful in applications and a competitive al- 1S Process is generally referred to@ort normalisatioror

ternative to other identification/verification techniques. The en- SCOre normalisatiol, 2J:

rolment speech is important in commercial applications, where p(X|Atar)

speakers (customers) may be unwilling to spend time on a long 9(X) = 1 ZC p(X|A ) )

and tedious enrolment procedure. The number of free parameters O =t cohe

or the complexity of the models is important for computational where the cohort s§t\¢op |1 < ¢ < C} consists ofC' speaker

reasons, and because it is a limitation for recognition systemgnodels, which have been selected to represent the impostor class.

with many users, e.g. in a nation wide speaker verification sys-

tem, storage of speaker models and rapid access to specific mod-he remainder of this paper is organised as follows. Section 2

els can be a major problem. gives a brief introduction to Gaussian Mixture Models (GMMs),
which is one of the most popular non-discriminative speaker mod-

In order to minimise the classification error rate, classification els used in state-of-the-art automatic speaker recognition sys-

decisions should ideally be based on the a posteriori class probtems; GMMs are used for creating baseline results in this study.

1. INTRODUCTION P(\|X) =

e The amount of enrolment speech needed.

abilities given the observed speech sigak 71, ..., Zr. For Section 3 describes an alternative, discriminative speaker model:
speaker identification this means we should identify the speakethe projection model Section 4 summarises the speech database
for which P(\;|X) is greatest: used for the experimental part of the paper and finally section 5

reports the results of a set of speaker verification and identifica-
Decide: speaker, whereP(\;|X) > P()\;|X),Vj #1 (1) tion experiments, where the projection models were evaluated.



2. GAUSSIAN MIXTURE MODELS ogniser and then time sampling each phoneme segment in or-
der to obtain a fixed dimensional representation.
A popular modelling technique for building speaker models is to

use Speaker Dependent (SD) GMMs for modelling the likelihood If we have a binary classification problem (speaker verification)

of the speech signal [3]: and assume that the two classes are characterised by normal dis-
- tributions with different means, but the same covariance matrix:
X|\) = Y - _ =,
PXA) HP(W ) ®) p(@Man) = N(@jitar, U) (8)
- p(fp‘imp) = N(fQ ﬁimp: U) 9
where
. . use of equation 2 leads to Fisher’s linear discriminant function:
P(EN) =Y N (& jim, Un) )
m=1 e - P(Almp)
whereM is the number of mixtures and Decide { target ifa(z —b) > 1“( PCrap ) (10)
_ impostor  otherwise
N (Z; fim, Up) = L ¢~ 05(E—itm ) PUL (Ffim)
(2m)P/2 U,y (05 where
| ) @ = U™ (jitar — fiimp) (1)
A GMM does not necessarily assume that the features are nor- e Imp
mally distributed: provided a GMM has a sufficient number of and
mixtures, it can be shown that it can approximate any distribu- b = 0.5(jitar + ﬁimp) (12)

tion arbitrarily well. For text independent modelling this prop- o ) »
erty is vital, because a normal distribution does not characteriséfowever, even though speaker verification is a binary classifi-
the feature variations well and many mixtures (e.g. 32—256) arecation problem, equation 10 can not be used directly, because
needed. For text (e.g. phoneme) dependent models the Gaufhe impostor class can not be modelled well by a single normal
sian assumption is better and GMMs with fewer mixtures can pedistribution. If a normal distribution characterises the feature dis-
employed. In general text dependent speaker modelling is mordribution from individual speakers, equation 10 can, however, be
accurate than text independent modelling, because the acoustised for discriminating well between pairs of individual speak-
overlap between the speakers is smaller and discrimination there€rs-

fore easier.
When equation 10 is used, a hyper plane is used addbigion
surfaceseparating the two classes. The hyper plane is charac-
terised by the normal vectar (equation 11). The class identity
Constraining assumptions about the feature distributions char-:‘.S getermmei_bﬁ p_réJjecftlnhg tge Fe_st samfple oﬁrj]tm ordelr tp
acterising observations from different classes can significantly ind out on which side of the decision surface the sample Is po-
simplify the construction of a classifier. For phoneme dependen
speaker models a normal assumption is not bad, but can be ma

to fit even better by using segmental features: feature vectors ar

extracted which represent phoneme segments rather than IndlWfransform (the Fisher transform). The Fisher transform has been

ual speech frames [4, 5]. This can, for instance, be done by firsshown to be an effective way of preprocessing the feature vectors
explicitly identifying the phoneme segments using a speech "®Cbefore actually trying to determine the class identities [6].

3. PROJECTION MODELS

sitioned (see figure 1); the normal vectbwill here be referred

g as aprojection vector In [4, 6] a number of such projection
yectors were computed from a set of available “cohort speak-
rs” and used for constructing a linear speaker dependent speech

The projection vectors characterise a target speaker, and rather
than using them for constructing a speech transform, they can in
themselves be used as a speaker model, which here will be re-
ferred to as grojection model In order to estimate a projection
model, one needs a set of cohort speakers to be available, and for
each cohort speaker a relatively large amount of speech should
be available, so that for each projection component, robust esti-
mates of the covariance matriy, and the cohort speaker mean,
ﬁimp‘ can be obtained. Ideally the covariance matrix for a given
component, should be estimated from both the target speaker en-
rolment speech and the speech from the relevant cohort speaker,
but in practise the available enrolment speech from the target spe-
aker is severely limited and will not make much impact. Hence,

it is suggested here that only the target speaker mean vEgier,

be estimated from the target speaker enrolment data.

Training data

Impostor

A reference projection model is estimated from the enrolment

Ref. projection © Test projection speech and in the test situation, a “test projection model” is es-
timated for the same set of cohort speakers as for the reference
Figure 1: A reference and a test projection component. projection model. The test samples are here used directly as esti-

mates ofiitgr. The distance between two projection components



can be measured in terms of the angle between the reference pro- word | count | transcription

L o o, noll 125 nOl/
jection, d@yef, and the test projectioditest o 116 | /ey
tva 11.6 tvo:/
tre 11.6 ftrel
Ayt * 4 fyra 13.6 fYral
O (dyef, dtest = aco! M) (13) fem | 11.6 | ffem/
|aref| |@test sex 12.6 Iseks/

sju 11.5 /S u0/
atta 12.5 /Otal
An angle of0° indicates a perfect matdid,qf anddtestare par- nio 115 | iy

allel and in the same direction), whereas an anglé8of in- o o
dicates a maximally poor matdid,e anddtestare parallel but Table 1: Word transcriptions (SAMPA) and frequencies in the
point in opposite directions). The distance between a referenc&nrolment data.

projection model,Ayef = drefy,-- -, dref,,» and a test pro-

jection model Atest = dtest1, - - - , Gtestas, IS computed as the 5. EXPERIMENTS & RESULTS

average sum of the angles betweenMéndividual components

in the two projection models: A number of experiments were conducted in order to evaluate the

usefulness of the projection models for both speaker verification
o and speaker identification. In each experiment, a total of 30 spea-
1 - 4 ker models were trained for each target speaker corresponding to
Apaf, A = — . ; 14 e . i L
OAref Atest = 37 Z O(dret» dtest:) 34 the 30 within word triphones needed to transcribe the digits (see
=t table 1). Speaker models were constructed for different numbers

of training tokens per digit: 1, 2, 5 and all tokens (on average
The projection models are easy to estimate and require relativel 2.1 tokens/digit).

little storage per target speaker, because no matter how many
components are included in the model, oplyyr needs to be  |n order to compare the results to alternative speaker modelling
stored: ijmp and U are part of the “cohort library”, which is  techniques, a set of baseline experiments were conducted using
shared between all target speakers. GMMs as speaker models [3]. As for the projection models, 30
triphone models were trained for each target speaker and in the
evaluation the same speech segmentations were used. However,
the GMMs were based onfeame levekvaluation rather than on
a phoneme segmesvaluation: all the speech frames in a pho-
neme segment were used. The cosine transform was used for
In this work, the Swedish Gandalf database [7] was used. Theconverting the filter bank coefficients into cepstral coefficients;
database contains speech recorded over the public telephone neth coefficients were retained(, . . ., c24). The GMMs where
work; The target speaker set consists of 58 speakers (23 femalexperimentally optimised with regard to the number of compo-
+ 35 male) recorded over a one year period, and the impostonhents to include in the models. The covariance matrices were
set consists of 77 speakers (28 female + 49 male). The speectiagonal and were tied between the mixtures within one GMM;
items from Gandalf that were used in these experiments consisa minimum variance floor was imposed by means of a gender
of digit strings. For enrolment purposes, the target speakers werelependent estimate of the variance for the particular phoneme.
prompted for 25 5-digit utterances in a single session (session 1).
Utterances that contained speaker Qr_technical recording errorg ;- Speaker Verification
were removed from the test and training sets. On average this
meant that 12.1 training tokens were available per digit for eachTable 2 summarises the evaluation of the projection models when
target speaker (see table 1). The test trials (sessions 2—-28) wergsed for speaker verification. The table shows the EERs as a
based on 4-digit utterances: each speaker verification decisioffunction of the number of components (#¥cmp) in the model; the
was based on one such utterance. The test utterances consist ‘@wount” column indicates the number of training tokens per digit
two parts: thefavorite part, where the target speakers used the that were used for estimatingigr. The evaluation was based
same telephone handset as in the enrolment call, andahe  on 9413 same sex impostor speaker trials and respectively 5115
favorite part, where a number of different telephone handsetsfavorite and 1769 non-favorite target speaker trials. The EERs
were used: all different from the favorite handset. were computed a posteori using a single speaker independent
decision threshold for balancing the false acceptance and false
The speech data was parameterised as the logarithmic energgjection error rates. Further speaker verification results are re-
outputs of a filter bank with 24 triangular filters spaced linearly ported for this test set in [6].
along the logarithmic mel scale; each filter overlapped 50% with
each of its two neighbours. Feature vectors were extracted usindable 3 summarises the baseline speaker verification experiments,
a 25.6 ms Hamming window and a 10 ms frame period. Pho-where GMMs where used as speaker models. The number of
neme segments were identified by forced Viterbi decoding usingmixtures in each phoneme dependent GMM was respectively 2
SI HMMs. For the projection models, the phoneme segments(#count=1), 4 (#count=2), 8 (#count=5) and 8 (#cettf.1).
were represented by extracting three feature vectors from each
phoneme segment (one feature vector per emitting state in th&or both the GMM and the projection model experiments, the
HMM phoneme models). The three 24 dimensional vectors weretelephone handset is seen to play a major role: the favorite EERs
concatenated to form one long 72 dimensioplabneme vector  are 2—4 times lower than the non-favorite EERs. For both test
In order to eliminate the signal gain, the phoneme vectors weresets the projection models need approximately 20 components in
normalised to have norm one [5]. order to characterise the target speakers well. For the GMMs, at

4. SPEECH DATA



Projection models; Favorite handset Projection models; Favorite handset

#cmp | count=1 | count=2 | count=5 | counta 12.1 #cmp | count=1 | count=2 | count=5 | counta 12.1
1 25.7% 22.4% 17.6% 15.8% 1 73.2% 63.7% 56.3% 50.4%

2 22.3% 18.1% 13.3% 11.6% 2 62.7% 52.1% 40.9% 34.4%

5 16.7% 11.8% 8.2% 6.7% 5 46.0% 33.4% 21.2% 16.8%

10 13.1% 9.1% 5.6% 4.7% 10 36.9% 26.1% 13.5% 10.0%
20 12.5% 8.3% 5.2% 4.1% 20 32.2% 22.1% 11.5% 7.8%
40 11.7% 7.9% 4.9% 4.0% 40 27.7% 16.4% 8.0% 5.2%

Projection models; Non-favorite handset
#cmp | count=1 | count=2 | count=5 | countas 12.1
1

Projection models; Non-favorite handset
#cmp | count=1 | count=2 | count=5 | counta 12.1

T 33.0% 30.3% 27.3% 26.3% 83.9% 814% 17.8% 14.1%
2 30.7% 26.9% 24.4% 23.0% 2 78.7% 134% 66.9% 62.9%
: S b o e 5 65.2% 57.4% 47.7% 24.5%
i it o o Tooor 0 59.1% 50.5% 39.5% 36.1%
50 el o o e 20 55.6% 47.8% 37.6% 33.3%
o it T Treme il 70 50.3% 39.6% 29.2% 25.0%

Table 4: Speaker identification error rates using projection mod-
Table 2: Speaker verification EERS using projection models.  els.

- GMMs
GMMs; Favorite handset handset | count=1 | count=2 | count=5 | count~ 12.1
#cohorts | count=1 | count=2 | count=5 | countas 12.1 favorite 39195 18.8% 3.9% 55%
0 19.0% 10.6% 7.2% 6.6% - . . : :
K 70.5% 0% 48.7% 4 4%
T 199% T26% 54% 93% non-favorite 0.5% 56.0% 8.7% o
2 17.5% | 10.8% 6.2% 5.7% Table 5: Speaker identification error rates using GMMs.
5 17.8% 9.8% 5.2% T7%
10 17.7% 9.4% 5.3% 4.5% o ) ) )
20 17.7% 9.4% 5.7% 7% verification experiments. Table 5 summarises the corresponding
40 18.0% 9.2% 5.7% 4.5% identification error rates when GMMs are used. The telephone
_ handset again plays a major role and the GMMs in particular
GMMs; Non-favorite handset are sensitive to the handset change. Compared to the GMM error
#cohorts | count=1 | count=2 | count=5 | countr 12.1 . . 0
0 305% 25.9% 23.9% 23.5% rates, the projection model error rates are reduced by 10-20% for
1 30.0% 26.9% 24.3% 24.1% the favorite handset and 30-40% for the non-favorite handset.
2 28.5% 24.3% 21.3% 21.1%
5 27.7% 22.6% 19.7% 19.4%
10 27.9% 22.2% 19.9% 18.7% 6. CONCLUSIONS
20 28.3% 22.4% 20.1% 19.3%
40 283% | 223%] 19.7% 18.8% In this paper, projection models have been introduced and eval-

uated for speaker verification and speaker identification. The

projection models make strong parametric assumptions about the

least 5 cohort speakers are needed for score normalisation Thfeature _distri_bu_tions characteri'sing different speakers, and these
- N&nstraints limits the complexity of the models. Compared to

B e 0 e o e eeCiiehaseine expermert using GMS, e projcton models vere
> SP . y 9€l SPeags 1 1o offer slightly improved performance under matched con-
ers well, i.e. when a relatively large amount of enrolment speech

is available ditions and significantly improved performance under mismat-
: ched conditions, while at the same time generally requirering

For the favorite handset the projection model EERs are 10_15%}‘ewer parameters.

lower than the corresponding GMM EERs — for the non-favorite
handset the EER reduction is 20—-30%: the GMMs are somewhat 7. REFERENCES
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5.2. Speaker Identification



