
SPEAKER RECOGNITION BASED ON DISCRIMINATIVE PROJECTION MODELS

Jesper Ø. Olsen

Center for PersonKommunikation, Aalborg University,
Fredrik Bajers Vej 7A-6, DK-9220 Aalborg Øst, Denmark

email: jo@cpk.auc.dk, http://www.kom.auc.dk/�jo

ABSTRACT

A new discriminant speaker model is introduced in this paper.
The model is text dependent and relies on characterising speak-
ers in terms of the angular distance between “projection vectors”,
which allow good discrimination between individual speakers.
The projection models require only little enrolment data to be
available per target speaker, but at the same time require a set
of “cohort speakers” to be available for which a relatively large
amount of training speech is available per cohort speaker. The
projection model technique is evaluated on the Gandalf database
and compared to conventional Gaussian Mixture Models (GMMs).
It is found that the projection models require less storage per tar-
get speaker, while at the same time achieving lower error rates,
particularly when applied for speaker identification and recogni-
tion under mismatched conditions.

1. INTRODUCTION

Speaker recognition is the generic term used for two related clas-
sification problems:speaker verification, where the task is to ver-
ify a claimed speaker identity (2-way classification) andspeaker
identificationwhere the task is to identify a speaker from a group
of known speakers (N-way classification). An automatic speaker
recognition system can be characterised in terms of

� The classification error rate.

� The amount of enrolment speech needed.

� The number of free parameters.

The classification error rate is generally important for speaker
recognition to be useful in applications and a competitive al-
ternative to other identification/verification techniques. The en-
rolment speech is important in commercial applications, where
speakers (customers) may be unwilling to spend time on a long
and tedious enrolment procedure. The number of free parameters
or the complexity of the models is important for computational
reasons, and because it is a limitation for recognition systems
with many users, e.g. in a nation wide speaker verification sys-
tem, storage of speaker models and rapid access to specific mod-
els can be a major problem.

In order to minimise the classification error rate, classification
decisions should ideally be based on the a posteriori class prob-
abilities given the observed speech signalX = ~x1; : : : ; ~xT . For
speaker identification this means we should identify the speaker
for whichP (�ijX) is greatest:

Decide: speakeri, whereP (�ijX) � P (�j jX); 8j 6= i (1)

where the�i’s represent the individual speaker models in the sys-
tem. For speaker verification we should accept the identity claim
if the probability of the target speaker is greater than the proba-
bility of an impostor speaker:

Decide

(
accept ifg(X) =

P (�tarjX)
P (�impjX)

> 1

reject otherwise
(2)

The a posterior class probabilities may in practise be estimated
directly usingdiscriminativemodels (e.g. neural networks), which
model the decision surfaces of the classification problem, or they
may be estimated indirectly usingnon-discriminativemodels,
which separately model the Probability Density Functions (pdf’s)
characterising the individual classes. In the last case, the a poste-
rior class probabilities are then computed from the pdf estimates
using Bayes rule:

P (�ijX) =
P (�i)p(Xj�i)

p(X)
(3)

Discriminative models have the advantage that the modelling is
focused on feature variations which are particularly relevant for
the classification problem. Non-discriminative models, however,
are typically easier to train, when the number of different classes
is large, because the modelling problem is decomposed into a
number of simpler subproblems, namely the construction of ap-
proximations for the pdf’s,p(Xj�i), characterising the individ-
ual classes. When non-discriminative models are used, speaker
identification decisions can in practise be based directly on the
class conditional likelihoods,p(Xj�i), sincep(X) is common
to all speakers. For speaker verification it is here necessary to
specifically construct a “speaker model” for the impostor class.
This process is generally referred to ascohort normalisationor
score normalisation[1, 2]:

g(X) �
p(Xj�tar)

1
C

PC

c=1
p(Xj�coh;c)

(4)

where the cohort setf�coh;cj1 � c � Cg consists ofC speaker
models, which have been selected to represent the impostor class.

The remainder of this paper is organised as follows. Section 2
gives a brief introduction to Gaussian Mixture Models (GMMs),
which is one of the most popular non-discriminative speaker mod-
els used in state-of-the-art automatic speaker recognition sys-
tems; GMMs are used for creating baseline results in this study.
Section 3 describes an alternative, discriminative speaker model:
theprojection model. Section 4 summarises the speech database
used for the experimental part of the paper and finally section 5
reports the results of a set of speaker verification and identifica-
tion experiments, where the projection models were evaluated.



2. GAUSSIAN MIXTURE MODELS

A popular modelling technique for building speaker models is to
use Speaker Dependent (SD) GMMs for modelling the likelihood
of the speech signal [3]:

p(Xj�i) =

TY
t=1

p(~xtj�i) (5)

where

p(~xj�i) =

MX
m=1

cmN (~x; ~�m;Um) (6)

whereM is the number of mixtures and

N (~x; ~�m;Um) =
1

(2�)D=2jUmj0:5
e
�0:5(~x�~�m)TRP

U
�1

m
(~x�~�m)

(7)
A GMM does not necessarily assume that the features are nor-
mally distributed: provided a GMM has a sufficient number of
mixtures, it can be shown that it can approximate any distribu-
tion arbitrarily well. For text independent modelling this prop-
erty is vital, because a normal distribution does not characterise
the feature variations well and many mixtures (e.g. 32–256) are
needed. For text (e.g. phoneme) dependent models the Gaus-
sian assumption is better and GMMs with fewer mixtures can be
employed. In general text dependent speaker modelling is more
accurate than text independent modelling, because the acoustic
overlap between the speakers is smaller and discrimination there-
fore easier.

3. PROJECTION MODELS

Constraining assumptions about the feature distributions char-
acterising observations from different classes can significantly
simplify the construction of a classifier. For phoneme dependent
speaker models a normal assumption is not bad, but can be made
to fit even better by using segmental features: feature vectors are
extracted which represent phoneme segments rather than individ-
ual speech frames [4, 5]. This can, for instance, be done by first
explicitly identifying the phoneme segments using a speech rec-
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Figure 1: A reference and a test projection component.

ogniser and then time sampling each phoneme segment in or-
der to obtain a fixed dimensional representation.

If we have a binary classification problem (speaker verification)
and assume that the two classes are characterised by normal dis-
tributions with different means, but the same covariance matrix:

p(~xj�tar) = N (~x; ~�tar;U) (8)

p(~xj�imp) = N (~x; ~�imp;U) (9)

use of equation 2 leads to Fisher’s linear discriminant function:

Decide

(
target if~a(~x�~b) > ln

�P (�imp)
P (�tar)

�
impostor otherwise

(10)

where
~a = U

�1
(~�tar� ~�imp) (11)

and
~b = 0:5(~�tar+ ~�imp) (12)

However, even though speaker verification is a binary classifi-
cation problem, equation 10 can not be used directly, because
the impostor class can not be modelled well by a single normal
distribution. If a normal distribution characterises the feature dis-
tribution from individual speakers, equation 10 can, however, be
used for discriminating well between pairs of individual speak-
ers.

When equation 10 is used, a hyper plane is used as thedecision
surfaceseparating the two classes. The hyper plane is charac-
terised by the normal vector~a (equation 11). The class identity
is determined by projecting the test sample onto~a in order to
find out on which side of the decision surface the sample is po-
sitioned (see figure 1); the normal vector~a will here be referred
to as aprojection vector. In [4, 6] a number of such projection
vectors were computed from a set of available “cohort speak-
ers” and used for constructing a linear speaker dependent speech
transform (the Fisher transform). The Fisher transform has been
shown to be an effective way of preprocessing the feature vectors
before actually trying to determine the class identities [6].

The projection vectors characterise a target speaker, and rather
than using them for constructing a speech transform, they can in
themselves be used as a speaker model, which here will be re-
ferred to as aprojection model. In order to estimate a projection
model, one needs a set of cohort speakers to be available, and for
each cohort speaker a relatively large amount of speech should
be available, so that for each projection component, robust esti-
mates of the covariance matrix,U, and the cohort speaker mean,
~�imp, can be obtained. Ideally the covariance matrix for a given
component, should be estimated from both the target speaker en-
rolment speech and the speech from the relevant cohort speaker,
but in practise the available enrolment speech from the target spe-
aker is severely limited and will not make much impact. Hence,
it is suggested here that only the target speaker mean vector,~�tar
be estimated from the target speaker enrolment data.

A reference projection model is estimated from the enrolment
speech and in the test situation, a “test projection model” is es-
timated for the same set of cohort speakers as for the reference
projection model. The test samples are here used directly as esti-
mates of~�tar. The distance between two projection components



can be measured in terms of the angle between the reference pro-
jection,~aref, and the test projection,~atest:

�(~aref;~atest) = acos
�
~aref � ~atest
j~arefjj~atestj

�
(13)

An angle of0� indicates a perfect match(~aref and~atestare par-
allel and in the same direction), whereas an angle of180

� in-
dicates a maximally poor match(~aref and~atestare parallel but
point in opposite directions). The distance between a reference
projection model,Aref = ~aref;1; : : : ;~aref;M , and a test pro-
jection model,Atest= ~atest;1; : : : ;~atest;M , is computed as the
average sum of the angles between theM individual components
in the two projection models:

�(Aref; Atest) =
1

M

MX
i=1

�(~aref;i;~atest;i) (14)

The projection models are easy to estimate and require relatively
little storage per target speaker, because no matter how many
components are included in the model, only~�tar needs to be
stored: ~�imp andU are part of the “cohort library”, which is
shared between all target speakers.

4. SPEECH DATA

In this work, the Swedish Gandalf database [7] was used. The
database contains speech recorded over the public telephone net-
work; The target speaker set consists of 58 speakers (23 female
+ 35 male) recorded over a one year period, and the impostor
set consists of 77 speakers (28 female + 49 male). The speech
items from Gandalf that were used in these experiments consist
of digit strings. For enrolment purposes, the target speakers were
prompted for 25 5-digit utterances in a single session (session 1).
Utterances that contained speaker or technical recording errors
were removed from the test and training sets. On average this
meant that 12.1 training tokens were available per digit for each
target speaker (see table 1). The test trials (sessions 2–28) were
based on 4-digit utterances: each speaker verification decision
was based on one such utterance. The test utterances consist of
two parts: thefavorite part, where the target speakers used the
same telephone handset as in the enrolment call, and thenon-
favorite part, where a number of different telephone handsets
were used: all different from the favorite handset.

The speech data was parameterised as the logarithmic energy
outputs of a filter bank with 24 triangular filters spaced linearly
along the logarithmic mel scale; each filter overlapped 50% with
each of its two neighbours. Feature vectors were extracted using
a 25.6 ms Hamming window and a 10 ms frame period. Pho-
neme segments were identified by forced Viterbi decoding using
SI HMMs. For the projection models, the phoneme segments
were represented by extracting three feature vectors from each
phoneme segment (one feature vector per emitting state in the
HMM phoneme models). The three 24 dimensional vectors were
concatenated to form one long 72 dimensionalphoneme vector.
In order to eliminate the signal gain, the phoneme vectors were
normalised to have norm one [5].

word count transcription
noll 12.5 /n O l/
ett 11.6 /e t/
två 11.6 /t v o:/
tre 11.6 /t r e:/
fyra 13.6 /f Y r a/
fem 11.6 /f e m/
sex 12.6 /s e k s/
sju 11.5 /S u0/
åtta 12.5 /O t a/
nio 11.5 /n I U/

Table 1: Word transcriptions (SAMPA) and frequencies in the
enrolment data.

5. EXPERIMENTS & RESULTS

A number of experiments were conducted in order to evaluate the
usefulness of the projection models for both speaker verification
and speaker identification. In each experiment, a total of 30 spea-
ker models were trained for each target speaker corresponding to
the 30 within word triphones needed to transcribe the digits (see
table 1). Speaker models were constructed for different numbers
of training tokens per digit: 1, 2, 5 and all tokens (on average
12.1 tokens/digit).

In order to compare the results to alternative speaker modelling
techniques, a set of baseline experiments were conducted using
GMMs as speaker models [3]. As for the projection models, 30
triphone models were trained for each target speaker and in the
evaluation the same speech segmentations were used. However,
the GMMs were based on aframe levelevaluation rather than on
a phoneme segmentevaluation: all the speech frames in a pho-
neme segment were used. The cosine transform was used for
converting the filter bank coefficients into cepstral coefficients;
all coefficients were retained (c1; : : : ; c24). The GMMs where
experimentally optimised with regard to the number of compo-
nents to include in the models. The covariance matrices were
diagonal and were tied between the mixtures within one GMM;
a minimum variance floor was imposed by means of a gender
dependent estimate of the variance for the particular phoneme.

5.1. Speaker Verification

Table 2 summarises the evaluation of the projection models when
used for speaker verification. The table shows the EERs as a
function of the number of components (#cmp) in the model; the
“count” column indicates the number of training tokens per digit
that were used for estimating~�tar. The evaluation was based
on 9413 same sex impostor speaker trials and respectively 5115
favorite and 1769 non-favorite target speaker trials. The EERs
were computed a posteori using a single speaker independent
decision threshold for balancing the false acceptance and false
rejection error rates. Further speaker verification results are re-
ported for this test set in [6].

Table 3 summarises the baseline speaker verification experiments,
where GMMs where used as speaker models. The number of
mixtures in each phoneme dependent GMM was respectively 2
(#count=1), 4 (#count=2), 8 (#count=5) and 8 (#count�12.1).

For both the GMM and the projection model experiments, the
telephone handset is seen to play a major role: the favorite EERs
are 2–4 times lower than the non-favorite EERs. For both test
sets the projection models need approximately 20 components in
order to characterise the target speakers well. For the GMMs, at



Projection models; Favorite handset
#cmp count = 1 count = 2 count = 5 count� 12.1

1 25.7% 22.4% 17.6% 15.8%
2 22.3% 18.1% 13.3% 11.6%
5 16.7% 11.8% 8.2% 6.7%

10 13.1% 9.1% 5.6% 4.7%
20 12.5% 8.3% 5.2% 4.1%
40 11.7% 7.9% 4.9% 4.0%

Projection models; Non-favorite handset
#cmp count = 1 count = 2 count = 5 count� 12.1

1 33.9% 30.3% 27.3% 26.3%
2 30.7% 26.9% 24.4% 23.0%
5 24.6% 20.6% 18.0% 16.8%

10 21.4% 18.0% 15.6% 14.2%
20 21.4% 18.0% 15.3% 13.6%
40 20.7% 17.8% 14.6% 13.2%

Table 2: Speaker verification EERs using projection models.

GMMs; Favorite handset
#cohorts count = 1 count = 2 count = 5 count� 12.1

0 19.0% 10.6% 7.2% 6.6%
1 19.2% 14.6% 9.4% 9.3%
2 17.5% 10.8% 6.2% 5.7%
5 17.8% 9.8% 5.4% 4.7%

10 17.7% 9.4% 5.3% 4.5%
20 17.7% 9.4% 5.7% 4.7%
40 18.0% 9.2% 5.7% 4.5%

GMMs; Non-favorite handset
#cohorts count = 1 count = 2 count = 5 count� 12.1

0 30.5% 25.9% 23.9% 23.5%
1 30.0% 26.9% 24.3% 24.1%
2 28.5% 24.3% 21.3% 21.1%
5 27.7% 22.6% 19.7% 19.4%

10 27.9% 22.2% 19.9% 18.7%
20 28.3% 22.4% 20.1% 19.3%
40 28.3% 22.3% 19.7% 18.8%

Table 3: Speaker verification EERs using GMMs.

least 5 cohort speakers are needed for score normalisation. The
score normalisation, however, is seen to be only really effective
when the speaker models actually characterise the target speak-
ers well, i.e. when a relatively large amount of enrolment speech
is available.

For the favorite handset the projection model EERs are 10–15%
lower than the corresponding GMM EERs – for the non-favorite
handset the EER reduction is 20–30%: the GMMs are somewhat
more sensitive to the change of handset.

With regard to complexity, the projection models require that 72
coefficients (~�tar) be stored per projection model. In addition to
this a72 � 72 matrix and a 72 dimensional vector needs to be
stored per component, but as mentioned previously, these data
are shared between all the target speakers in the system as are
the cohort speaker models for the GMMs. The GMMs generally
require more storage than the projection models: the GMMs with
eight mixture components used for thecount=5andcount�12.1
experiments require three times as many parameters as the pro-
jection models (i.e.(8+1)�24 = 216 coefficients per model), and
the GMMs with two mixture components used for thecount=1
experiments require the same amount of storage as the projection
models.

5.2. Speaker Identification

Table 4 summarises the evaluation of the projection models when
used for speaker identification. The set of speakers to be identi-
fied consisted of the 58 speakers used as target speakers in the

Projection models; Favorite handset
#cmp count = 1 count = 2 count = 5 count� 12.1

1 73.2% 63.7% 56.3% 50.4%
2 62.7% 52.1% 40.9% 34.4%
5 46.0% 33.4% 21.2% 16.8%

10 36.9% 26.1% 13.5% 10.0%
20 32.2% 22.1% 11.5% 7.8%
40 27.7% 16.4% 8.0% 5.2%

Projection models; Non-favorite handset
#cmp count = 1 count = 2 count = 5 count� 12.1

1 83.9% 81.4% 77.8% 74.7%
2 78.7% 73.4% 66.9% 62.9%
5 65.2% 57.4% 47.7% 44.5%

10 59.1% 50.5% 39.5% 36.1%
20 55.6% 47.8% 37.6% 33.3%
40 50.3% 39.6% 29.2% 25.0%

Table 4: Speaker identification error rates using projection mod-
els.

GMMs
handset count = 1 count = 2 count = 5 count� 12.1
favorite 39.1% 18.8% 8.9% 6.5%

non-favorite 70.5% 56.0% 48.7% 44.4%

Table 5: Speaker identification error rates using GMMs.

verification experiments. Table 5 summarises the corresponding
identification error rates when GMMs are used. The telephone
handset again plays a major role and the GMMs in particular
are sensitive to the handset change. Compared to the GMM error
rates, the projection model error rates are reduced by 10–20% for
the favorite handset and 30–40% for the non-favorite handset.

6. CONCLUSIONS

In this paper, projection models have been introduced and eval-
uated for speaker verification and speaker identification. The
projection models make strong parametric assumptions about the
feature distributions characterising different speakers, and these
constraints limits the complexity of the models. Compared to
baseline experiments using GMMs, the projection models were
found to offer slightly improved performance under matched con-
ditions and significantly improved performance under mismat-
ched conditions, while at the same time generally requirering
fewer parameters.
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