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ABSTRACT

In spoken language systems, the segmentation of utterances

into coherent linguistic/semantic units is required when mod-

ules following the speech recognizer can only process such

units one at a time. In this paper, techniques for seman-

tic boundary prediction, based on both acoustic and lexical

knowledge, are presented and tested on a corpus of person-

to-person dialogues. Best result gives 62.8% recall and 71.8%

precision.

1. INTRODUCTION

In spoken language systems, the minimal unit of analysis

does not necessarily correspond to a full sentence. A pos-

sible approach for language processing is that of splitting a

given sentence in a sequence of units that can be successively

processed by linguistic modules one at a time. The goal of

the Semantic Boundary (SB) detector is to locate boundaries

inside a sentence in order to obtain such \minimal units".

Useful information for SB detection can be extracted either

from the waveform of an utterance or from its corresponding

word sequence. Some prosodic features, such as the energy

contour, the speaking rate, and the fundamental frequency

F0, can e�ectively help the boundary individuation [11, 15].

For example, the short-time energy tends to decrease within

a segment and to reset at the beginning of the successive

segment. Also the speaking rate is generally higher at the

beginning of semantic units than at the end, and the F0 curve

shows di�erent trends in presence of questions, exclamations,

stressed words, etc. Although the use of prosody is very ap-

pealing, the literature shows that the correlation between

prosodic features and syntactic-semantic boundaries exists,

but it is not reliable enough to assure that prosody can be

used alone in boundary detection; however, the presence and

the length of �lled pauses seem to have a signi�cant correla-

tion with semantic boundaries [12]. An overview on the use

of prosody in speech-based systems can be found in [7].

For SB detection, the main source of information lies on the

linguistic content of the sentence [10, 2, 14, 9, 4]. However,

the detector can use only the recognizer output, in addition

to the acoustic parameters, and then it cannot be based on

linguistic information requiring sophisticated processing.

Word n-grams can e�ectively capture statistical relations be-

tween words and SBs [10]. In fact, once a word/SB n-gram

model is estimated on a training set, simple dynamic pro-

gramming algorithms can �nd the best segmentation or the

k-best segmentations of a test/input sentence.

In this paper, a detailed description of some techniques

aimed at extracting acoustic and lexical information for SB

detection is given. Furthermore, a method for combining the

two knowledge sources is proposed, together with results ob-

tained on a corpus of hundreds of human-human spontaneous

dialogues.

2. SEMANTIC BOUNDARIES

Collected corpus (Section 4) consists of a set of dialogues,

each formed by a sequence of turns or utterances. Di�er-

ent communicative intentions, i.e. speech acts (SAs), can be

enclosed in a turn. In [6], the set of SAs de�ned for the

domain considered in this paper, the \appointment schedul-

ing", is discussed. An example, translated from Italian, of a

turn segmented and labeled with SAs follows:

[ good morning = greeting ] [ this is ferrari =

introduce-self ] [ i'd like to fix an appointment =

introduce-topic ]

Assuming as a working hypothesis that an utterance is a

\
at" sequence of SAs, it is of primary interest to inves-

tigate the feasibility of automatically detecting boundaries

between successive SAs. In fact, segmenting the speech rec-

ognizer output in terms of SAs allows the following linguistic

modules to process each single SA at a time, reducing greatly

the ambiguity.

Given the result of the recognition process, the module based

on the techniques discussed in this paper should output a

segmented text like:

good morning SB this is ferrari SB i'd like to fix

an appointment



3. KNOWLEDGE SOURCES

3.1. Lexical Information

Sentence texts of the corpus can be seen as sequences of

triples:

� � �wi�1 bi�1 ni�1 wi bi ni wi+1 bi+1 ni+1 � � � (1)

where

wj 2W (vocabulary)

bj 2 fSB; �g

nj 2 f@fp;@hng�

that is, wjs are the non-noise words, bjs are either the symbol

SB indicating the presence of a semantic boundary, or the

empty string �, and njs are sequences, possibly empty, of

two symbols indicating the presence of �lled pauses (eh, ehm,

mmm, ah...) or human noises (mainly related to breathing),

respectively.

A trigram Language Model (LM) can be trained on such

sequences. Given a test/input sentence of the form (1):

~v = v1 � � � vn ; vi 2 V =W [ fSBg [ f@fp;@hng

its probability can be computed by using the trigram LM:

PrLM(~v) =
Qn

i=1
Pr(vi j hi)

� Pr(v1) Pr(v2 j v1)
Qn

i=3
Pr(vi j vi�2vi�1)

where the history (or context) hi of vi is limited to the two

words preceding vi.

Once a n-gram LM is estimated on a training set, the most

likely segmentation of a test/input sentence can be found by

scoring and sorting all its possible segmentations.

If a sentence consists of m words, all the possible seg-

mentations are 2m�1, an infeasible number for large m.

Simple heuristics can be introduced to limit the num-

ber of segmentations to be scored, such as that of allow-

ing an SB between words wi�1 and wi only if the di�er-

ence of the two probabilities Pr(wi�n+1 wi�n+2 � � �wi) and

Pr(wi�n+1 wi�n+2 � � �wi�1 SB) is less than a given thresh-

old, or allowing only the q < m boundaries corresponding to

the q lower di�erences.

Once all the allowed segmentations are scored and ordered,

the best one can be hypothesized. Another possibility is

to rescore the k-best segmentations on the basis of another

knowledge source, for example by using prosodic features.

The number k can be �xed a-priori, or made variable by

considering the k segmentations whose scores di�er from the

best one of less than a certain percentage de�ned by a factor

� 2 [0; 1].

3.2. Prosodic Information

Given a test/input sentence of the form (1), a vector ~�i of

prosodic features can be computed for each bi. A label can

be associated to the vector: True if bi is SB, False if bi is

the empty string �; in particular, the label True occurs when

wi is the last non-noise word of an SA and wi+1 is the �rst

non-noise word of the successive SA; the label False occurs

when wi and wi+1 belong to the same SA, or when wi is the

last non-noise word of the sentence.

A Binary Classi�cation Tree (BCT) [3] can be trained to

recognize the presence of an SB on the basis of the feature

vector ~�. Given a sentence ~v of the form (1) with its seg-

mentation de�ned by the sequence of bis, the BCT is asked

to give the probability Pr(bi j ~�i) for each bi. The product

of these probabilities over all bis:

Pl
pros

(~v) =

mY
i=1

Pr(bi j ~�i)

gives the \prosodic plausibility" of that particular segmen-

tation.

Computed prosodic features are related to speaking rate, en-

ergy and F0 contours. Their brief description follows.

Speaking Rate For each phone-unit p used in lexical tran-

scriptions, its average duration �p is computed on the train-

ing speech data 
:

�p =
1

Np

X
p2


Dp

where Dp is the actual duration of a particular realization of

the phone-unit p and Np is the number of its occurrences in


.

The average duration �w of each non-noise word w of the

lexicon is computed as the sum of the �p of the phone-units

in its transcription.

Information about the speaking rate can be obtained by com-

paring actual duration D of a word with its average duration.

Three values are computed and included in the feature vector
~�i:
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Energy contour The short time energy is derived from the

speech signal using an Hamming window of 20 ms, at a rate

of 10 ms. Its contour is then low pass �ltered and normalized

with respect to the maximum value along the utterance. For

each bi, 25 features are derived from speech segments cor-

responding to the sequence of words wi�2 � � �wi+2. As an



example, the minimum, average and maximum values in the

three segments wi, wi�1wiwi+1 and wi�2 � � �wi+2 are calcu-

lated.

F0 contour The F0 curve is extracted by means of a high

resolution pitch determination algorithm [8] based on the

evaluation of the cross-correlation coe�cient between two

adjacent speech segments1. In our implementation the al-

gorithm produces a pitch value every 10 ms. Similarly to

energy, 18 parameters are derived from the F0 curve.

3.3. LM and Prosody Integration

The integration of lexical and prosodic information was done

by rescoring the k-best segmentations, hypothesized by the

LM, with their prosodic plausibilities. In particular, the one

giving the best score obtained with the weighted product of

its LM probability (PrLM (~vj)) and its prosodic plausibility

(Plpros(~vj)) is chosen as follows:

~̂v = argmax
j=1:::k

�
Pr

LM
(~vj)

��
� (Pl

pros
(~vj))

�
(2)

4. CORPUS DESCRIPTION

Experiments were carried out on a dialogue corpus collected

at ITC-Irst [1], composed of monolingual person-to-person

Italian conversations for which acoustic signals, word tran-

scriptions and linguistic annotations are available. The two

speakers were asked to �x an appointment, observing the

restrictions shown on two calendar pages they were given;

they did not see each other and could hear the partner only

through headphones. The conversations took place in an

acoustically isolated room and were naturally uttered by the

speakers, without any machine mediation.

The dialogues were transcribed by annotating all extra-

linguistic phenomena such as mispronunciations, restarts

and human noises, with the exception of pauses.

Training Test Whole

Corpus

# dialogue 169+12/2 20+12/2 201

# turn 2680 406 3086

# SA 5421 877 6298

# SB 2741 471 3212

size (non-noise) 27786 4683 32469

jWj (non-noise) 1291 627 1433

Table 1: Training and test set statistics.

The whole corpus was then divided into training and test

sets (see Table 1), paying attention to avoid speaker over-

lap between the two sets. The test set consists of all the

sentences uttered by 11 speakers, resulting in 20 complete

dialogues and 12 half dialogues, for a total of 406 turns.

1The software of the pitch determination algorithm was kindly

provided by the Cambridge University Engineering Department.

5. EXPERIMENTS

5.1. Results using LM

In order to make the number of semantic segmentation hy-

potheses manageable, only a maximum of q = 14 SBs (see

Subsection 3.1) were allowed inside each sentence. This

means that at the most 214 = 16384 di�erent segmentations

had to be scored for each test/input sentence.

In Figure 1, the probability of �nding the correct segmenta-

tion of a sentence, within the k-best hypothesized segmen-

tations, is given as a function of k. In the experiment, the

average number k was determined by varying � 2 [0; 1] (see

Subsection 3.1), as shown along the curve.

Figure 1: Probability that the actual sentence segmentation

falls inside the k-best.

In Table 2 results are reported by aligning the 1-best output

against the hand labelled test data. Performance is given in

terms of correct detection (C), insertions (I) and deletions

(D) of SBs, and recall and precision measures.

type C I D Recall Precision

LM 285 115 186 60.5% 71.3%

Table 2: SB detection results using the LM 1-best output.

5.2. Results using Prosody

To check the relevance of the three types of prosodic features,

three di�erent BCTs were built: one for the 3 speaking rate

features (ros), one for the 25 features related to the energy

contour(ene), and one for the 18 features derived from the

F0 curve (F0). Finally, a general BCT was trained to handle

all the 46 prosodic features considered (all).

In Table 3 results obtained on the test set, by aligning the

outputs of the BCTs against the hand labelled test data, are

reported.



type #features C I D Recall Precision

ros 3 141 639 330 29.9% 18.1%

ene 25 171 510 300 36.3% 25.1%

F0 18 133 622 338 28.2% 17.6%

all 46 211 520 260 44.8% 28.9%

Table 3: SB detection results using prosody.

5.3. E�ects of Integration

The integration of LM and prosody was then applied as ex-

plained in Subsection 3.3. The average number k of segmen-

tation hypotheses to be rescored was 5.4, derived setting �

to 0:980. Weights � and � were empirically chosen, and set

to 0:8 and 1:0 respectively. Results are reported in Table 4.

type C I D Recall Precision

LM�prosody 296 116 175 62.8% 71.8%

Table 4: SB detection results using LM and prosody.

6. CONCLUSIONS

A method for automatic semantic boundary detection was

presented. It integrates linguistic knowledge, in the form of

a trigram language model, and prosodic knowledge, in the

form of a BCT model.

Separate performance evaluations were done for each kind of

model and for each type of prosodic feature. As expected,

the best result is reached with the trigram LM that codes

the linguistic knowledge in the form of word sequence prob-

abilities.

Prosodic features give promising results too. Single per-

formance shows that the short term energy curve provides

the strongest contribution; also the speaking rate appears to

be very helpful, even if in the reported experiments it was

modeled only by three features. However, the best result is

de�nitely obtained by training a BCT for all the prosodic

features, showing that each one provides an own e�ective

contribution to the classi�cation.

The integration of LM and prosody provides a slight im-

provement of recall and precision in SB detection. More sig-

ni�cant performance increases are expected by investigating

di�erent integration methods, such as that proposed in [13]

where a tight combination of lexical and acoustic knowledges

is implemented through an A� algorithm.

More e�cient representations of both the energy and F0 tra-

jectories could be obtained by expanding them as a linear

combination of some interpolating functions. The coe�-

cients of the expansions can be used alternatively or in con-

junction with the parameters adopted for this work.

Further e�orts will be devoted to a feature selection step,

that could suggest what parameters are more useful for SB

detection. The selection will be done by inspecting the hi-

erarchical structure of BCTs, and/or by applying a linear

transformation to the features in order to maximize their

class separability [5].
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