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ABSTRACT

In spoken language systems, the segmentation of utterances
into coherent linguistic/semantic units is required when mod-
ules following the speech recognizer can only process such
units one at a time. In this paper, techniques for seman-
tic boundary prediction, based on both acoustic and lexical
knowledge, are presented and tested on a corpus of person-
to-person dialogues. Best result gives 62.8% recall and 71.8%
precision.

1. INTRODUCTION

In spoken language systems, the minimal unit of analysis
does not necessarily correspond to a full sentence. A pos-
sible approach for language processing is that of splitting a
given sentence in a sequence of units that can be successively
processed by linguistic modules one at a time. The goal of
the Semantic Boundary (SB) detector is to locate boundaries
inside a sentence in order to obtain such “minimal units”.

Useful information for SB detection can be extracted either
from the waveform of an utterance or from its corresponding
word sequence. Some prosodic features, such as the energy
contour, the speaking rate, and the fundamental frequency
FO, can effectively help the boundary individuation [11, 15].
For example, the short-time energy tends to decrease within
a segment and to reset at the beginning of the successive
segment. Also the speaking rate is generally higher at the
beginning of semantic units than at the end, and the FO curve
shows different trends in presence of questions, exclamations,
stressed words, etc. Although the use of prosody is very ap-
pealing, the literature shows that the correlation between
prosodic features and syntactic-semantic boundaries exists,
but it is not reliable enough to assure that prosody can be
used alone in boundary detection; however, the presence and
the length of filled pauses seem to have a significant correla-
tion with semantic boundaries [12]. An overview on the use
of prosody in speech-based systems can be found in [7].

For SB detection, the main source of information lies on the
linguistic content of the sentence [10, 2, 14, 9, 4]. However,
the detector can use only the recognizer output, in addition

to the acoustic parameters, and then it cannot be based on
linguistic information requiring sophisticated processing.

Word n-grams can effectively capture statistical relations be-
tween words and SBs [10]. In fact, once a word/SB n-gram
model is estimated on a training set, simple dynamic pro-
gramming algorithms can find the best segmentation or the
k-best segmentations of a test/input sentence.

In this paper, a detailed description of some techniques
aimed at extracting acoustic and lexical information for SB
detection is given. Furthermore, a method for combining the
two knowledge sources is proposed, together with results ob-
tained on a corpus of hundreds of human-human spontaneous
dialogues.

2. SEMANTIC BOUNDARIES

Collected corpus (Section 4) consists of a set of dialogues,
each formed by a sequence of turns or utterances. Differ-
ent communicative intentions, i.e. speech acts (SAs), can be
enclosed in a turn. In [6], the set of SAs defined for the
domain considered in this paper, the “appointment schedul-
ing”, is discussed. An example, translated from Italian, of a
turn segmented and labeled with SAs follows:

[ good morning = greeting 1 [ this is ferrari =
introduce-self ] [ i’d like to fix an appointment =
introduce-topic ]

Assuming as a working hypothesis that an utterance is a
“flat” sequence of SAs, it is of primary interest to inves-
tigate the feasibility of automatically detecting boundaries
between successive SAs. In fact, segmenting the speech rec-
ognizer output in terms of SAs allows the following linguistic
modules to process each single SA at a time, reducing greatly
the ambiguity.

Given the result of the recognition process, the module based
on the techniques discussed in this paper should output a
segmented text like:

good morning SB this is ferrari SB i’d like to fix
an appointment



3. KNOWLEDGE SOURCES

3.1. Lexical Information

Sentence texts of the corpus can be seen as sequences of
triples:

crwi—1 bi—1 ni—1 wi bi i witr biyr niga--- 1)
where

w; € W (vocabulary)
b; € {SB, \}
n; € {Qfp, Qhn}"

that is, w;s are the non-noise words, b;s are either the symbol
SB indicating the presence of a semantic boundary, or the
empty string A, and njs are sequences, possibly empty, of
two symbols indicating the presence of filled pauses (eh, ehm,
mmm, ah...) or human noises (mainly related to breathing),
respectively.

A trigram Language Model (LM) can be trained on such
sequences. Given a test/input sentence of the form (1):

o
vV =71 ""

‘v, v €V =WU{SB}U{Qfp, @hn}

its probability can be computed by using the trigram LM:
PriM(&) =11, Pr(vi | hi)

& Pr(vi) Pr(va | v1) [}, Pr(vi | vi—2vi—1)

where the history (or context) h; of v; is limited to the two
words preceding v;.

Once a n-gram LM is estimated on a training set, the most
likely segmentation of a test/input sentence can be found by
scoring and sorting all its possible segmentations.

If a sentence comsists of m words, all the possible seg-
mentations are 2™ ! an infeasible number for large m.
Simple heuristics can be introduced to limit the num-
ber of segmentations to be scored, such as that of allow-
ing an SB between words w;_; and w; only if the differ-
ence of the two probabilities Pr(wi—n+1 Wi—n+2---w;) and
Pr(wi—n+1 Wi—n+42---wi—1 SB) is less than a given thresh-
old, or allowing only the ¢ < m boundaries corresponding to
the g lower differences.

Once all the allowed segmentations are scored and ordered,
the best one can be hypothesized. Another possibility is
to rescore the k-best segmentations on the basis of another
knowledge source, for example by using prosodic features.

The number k can be fixed a-priori, or made variable by
considering the k£ segmentations whose scores differ from the
best one of less than a certain percentage defined by a factor
d €10,1].

3.2. Prosodic Information

Given a test/input sentence of the form (1), a vector 6; of
prosodic features can be computed for each b;. A label can
be associated to the vector: True if b; is SB, False if b; is
the empty string A; in particular, the label True occurs when
w; is the last non-noise word of an SA and w;4 is the first
non-noise word of the successive SA; the label False occurs
when w; and w;4+1 belong to the same SA, or when w; is the
last non-noise word of the sentence.

A Binary Classification Tree (BCT) [3] can be trained to
recognize the presence of an SB on the basis of the feature
vector 6. Given a sentence ¥ of the form (1) with its seg-
mentation defined by the sequence of b;s, the BCT is asked
to give the probability Pr(b; | 9_;) for each b;. The product
of these probabilities over all b;s:

P17 (¥) = [ [ Pr(bi | 6))
=1

gives the “prosodic plausibility” of that particular segmen-
tation.

Computed prosodic features are related to speaking rate, en-
ergy and FO contours. Their brief description follows.

Speaking Rate For each phone-unit p used in lexical tran-
scriptions, its average duration p, is computed on the train-

ing speech data ):
1
Hp = Fp Z D,
pEN

where D, is the actual duration of a particular realization of
the phone-unit p and N, is the number of its occurrences in
Q.

The average duration pu, of each non-noise word w of the
lexicon is computed as the sum of the p, of the phone-units
in its transcription.

Information about the speaking rate can be obtained by com-
paring actual duration D of a word with its average duration.
Three values are computed and included in the feature vector
0;:
Do,
. i
[
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Energy contour The short time energy is derived from the
speech signal using an Hamming window of 20 ms, at a rate
of 10 ms. Its contour is then low pass filtered and normalized
with respect to the maximum value along the utterance. For
each b;, 25 features are derived from speech segments cor-
responding to the sequence of words w;—2 - -wiy2. As an



example, the minimum, average and maximum values in the
three segments w;, w;—1w;w;4+1 and w;—s - - - w;42 are calcu-
lated.

FO contour The FO curve is extracted by means of a high
resolution pitch determination algorithm [8] based on the
evaluation of the cross-correlation coefficient between two
adjacent speech segments'. In our implementation the al-
gorithm produces a pitch value every 10 ms. Similarly to
energy, 18 parameters are derived from the FO curve.

3.3. LM and Prosody Integration

The integration of lexical and prosodic information was done
by rescoring the k-best segmentations, hypothesized by the
LM, with their prosodic plausibilities. In particular, the one
giving the best score obtained with the weighted product of
its LM probability (Pr”™(¥;)) and its prosodic plausibility
(P1P*°*(¥;)) is chosen as follows:

¥ = argmax (PrM(¥;))" x (P1”**(¥;))” (2)
j=1...k

4. CORPUS DESCRIPTION

Experiments were carried out on a dialogue corpus collected
at ITC-Irst [1], composed of monolingual person-to-person
Italian conversations for which acoustic signals, word tran-
scriptions and linguistic annotations are available. The two
speakers were asked to fix an appointment, observing the
restrictions shown on two calendar pages they were given;
they did not see each other and could hear the partner only
through headphones. The conversations took place in an
acoustically isolated room and were naturally uttered by the
speakers, without any machine mediation.

The dialogues were transcribed by annotating all extra-
linguistic phenomena such as mispronunciations, restarts
and human noises, with the exception of pauses.

Training Test Whole

Corpus
# dialogue 169+12/2 | 204+12/2 201
# turn 2680 406 3086
# SA 5421 877 6298
# SB 2741 471 3212
size (non-noise) 27786 4683 32469
|W| (non-noise) 1291 627 1433

Table 1: Training and test set statistics.

The whole corpus was then divided into training and test
sets (see Table 1), paying attention to avoid speaker over-
lap between the two sets. The test set consists of all the
sentences uttered by 11 speakers, resulting in 20 complete
dialogues and 12 half dialogues, for a total of 406 turns.

I The software of the pitch determination algorithm was kindly
provided by the Cambridge University Engineering Department.

5. EXPERIMENTS

5.1. Results using LM

In order to make the number of semantic segmentation hy-
potheses manageable, only a maximum of ¢ = 14 SBs (see
Subsection 3.1) were allowed inside each sentence. This
means that at the most 2'* = 16384 different segmentations
had to be scored for each test/input sentence.

In Figure 1, the probability of finding the correct segmenta-
tion of a sentence, within the A-best hypothesized segmen-
tations, is given as a function of k. In the experiment, the
average number k was determined by varying & € [0, 1] (see
Subsection 3.1), as shown along the curve.
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Figure 1: Probability that the actual sentence segmentation
falls inside the k-best.

In Table 2 results are reported by aligning the I-best output
against the hand labelled test data. Performance is given in
terms of correct detection (C), insertions (I) and deletions
(D) of SBs, and recall and precision measures.

type C I D
LM 285 | 115 | 186

Recall
60.5%

Precision
71.3%

Table 2: SB detection results using the LM 1-best output.

5.2. Results using Prosody

To check the relevance of the three types of prosodic features,
three different BCTs were built: one for the 3 speaking rate
features (ros), one for the 25 features related to the energy
contour(ene), and one for the 18 features derived from the
FO curve (F0). Finally, a general BCT was trained to handle
all the 46 prosodic features considered (all).

In Table 3 results obtained on the test set, by aligning the
outputs of the BCTs against the hand labelled test data, are
reported.



type | #features C I D Recall | Precision
ros 3 141 | 639 | 330 29.9% 18.1%
ene 25 171 | 510 | 300 36.3% 25.1%
FO 18 133 | 622 | 338 28.2% 17.6%
all 46 211 | 520 | 260 44.8% 28.9%

Table 3: SB detection results using prosody.

5.3. Effects of Integration

The integration of LM and prosody was then applied as ex-
plained in Subsection 3.3. The average number k of segmen-
tation hypotheses to be rescored was 5.4, derived setting §
to 0.980. Weights « and 3 were empirically chosen, and set
to 0.8 and 1.0 respectively. Results are reported in Table 4.

type C I D
LMeprosody || 296 | 116 | 175

Recall
62.8%

Precision
71.8%

Table 4: SB detection results using LM and prosody.

6. CONCLUSIONS

A method for automatic semantic boundary detection was
presented. It integrates linguistic knowledge, in the form of
a trigram language model, and prosodic knowledge, in the
form of a BCT model.

Separate performance evaluations were done for each kind of
model and for each type of prosodic feature. As expected,
the best result is reached with the trigram LM that codes
the linguistic knowledge in the form of word sequence prob-
abilities.

Prosodic features give promising results too. Single per-
formance shows that the short term energy curve provides
the strongest contribution; also the speaking rate appears to
be very helpful, even if in the reported experiments it was
modeled only by three features. However, the best result is
definitely obtained by training a BCT for all the prosodic
features, showing that each one provides an own effective
contribution to the classification.

The integration of LM and prosody provides a slight im-
provement of recall and precision in SB detection. More sig-
nificant performance increases are expected by investigating
different integration methods, such as that proposed in [13]
where a tight combination of lexical and acoustic knowledges
is implemented through an A* algorithm.

More efficient representations of both the energy and FO tra-
jectories could be obtained by expanding them as a linear
combination of some interpolating functions. The coeffi-
cients of the expansions can be used alternatively or in con-
junction with the parameters adopted for this work.

Further efforts will be devoted to a feature selection step,
that could suggest what parameters are more useful for SB

detection. The selection will be done by inspecting the hi-
erarchical structure of BCTs, and/or by applying a linear
transformation to the features in order to maximize their
class separability [5].
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