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ABSTRACT information, of all small networks will be approximately

This paper describes, how to train Maximum Mutual In-the same as for one big network.

formation Neural Networks (MMINN) in an efficient way, 2 BASELINE SYSTEM
with a new topology. Large vocabulary speech recogni- _ _ _ _
tion systems, based on a Hybrid MMI/connectionist HMMThe baseline system is a single layer neural network with
combination, have shown good performance on severah input size of 12 times the number of frames looked at.
tasks [1] and [2]. MMINNSs are trained to maximize theThis means for a single frame network the size is 12, for
mutual information between the index of the winning outa three frame network the size would be 36. The output
put neuron (Winner-Takes-All network) and the phonetisize is chosen to 200, to have the same topology as the sys-
cal class of the corresponding acoustic frame. One mtem in [1]. Figure 1 shows the structure for a single frame
jor problem of MMI-neural networks is the high computa-network. The network is trained to maximize the mutual
tional effort, which is needed for the training of the neurainformation between the label strearhproduced by the
networks. The computational effort is proportional to thenetwork and the corresponding phonetical information
input and output size of the neural network and to the num- _

ber of training samples. This paper shows two approaches, IW,Y) =HW) - HWIY) (1)

that demonstrate, how these long training times can be rgy Eq. 1LH (W) is not affected by the neural network, thus
duced with very low or even no loss in recognition accUpnly H(W|Y) has to be minimized in order to maximize
racy. This is achieved by the use of phonetical knowledgg(m Y'). This means, that the loss of information, which
to build a network topology based on phonetical classes | occur because of the quantization error, will be mini-

mized.
1. INTRODUCTION HWI|Y)=- ZZP(wi,ym) logP(wilym) (2)
I M

MMINNSs can be used as a high performance vector quan-

tizer (VQ) for a discrete HMM speech recognizer. It car{3] describes a method how to perform this training with
be shown, that this paradigm is optimal for statistical pata gradient descent approach using the softmax function in
tern classification in the maximum likelihood sense [3]the output layer.

The computational effort for the training of the single layer For the training procedure phonetical knowledge is nec-
MMINN is proportional to the input and output size of theessary, thus the training data has been aligned with 47
neural network and to the number of training samples. Tphones. (45 phones plus silence and an optional inter-word
reduce the computing time, one could decrease the numisiience).

of input or output neurons or the number of training data. o 1 2
But by doing this, one would also decrease the mutual in-
formation of the network, which leads to worse recognition
results. A solution for this problem is to split up this single
network into several smaller networks, each for a subset
of the phonetical classes (e.g. vowels, etc.) The decisic;
which of the smaller networks is chosen, is done by another
network, which now tries to maximize the mutual infor-o 1 2 3 4 eee 195 196 197 198 199
mation between its output and the phonetical subclasses of

the corresponding frame (decision network). Those smafligure 1. Baseline topology for the MMI neural network,
networks can be trained much faster, due to their small&ith an input layer size of 12 and an output layer size of
number of parameters. The goal is, that the overall mutuaD0O
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Figure 2. Structure of a flat decision network and the corresponding MMI networks

3. NEW TOPOLOGIES tized to the same class, a new MINN is trained. So for
each output neuron of the decision network there will be

;he %qatl of a nevlv topcIJIIogy Its to kSpI't rl:.prfhe n%twtork Nsiich a MINN. Only those training data are used for each
9. L Into Several smaller NEtworks, Which can be train€fla,,, \;iNN, which correspond to the winning neuron of

faster, because of their smaller output layer. An add e decision network. Thus each of the new MINNs will

tional decision network is necessary to choose, which nly see a fraction of the whole training data. The input of

the smgller netvvprks will .be used. . these new networks is the same feature vector, the decision
The idea of this paper is to use phonetical knowledge

e . ) X . "Wose second level networks can be computed as:
ing into this class. In the following sections two different

topologies for this decision network and the small MINNs output size of the baseline system
are presented:

3
output size of the decision network 3)
3.1. Flat decision network Another possibility to determine the size of the output
layer, is to consider the number of training data each net-

The topology of the first approach (see Fig. 2) present ork gets. So for more training data more parameters can

here consists of a single layer (flat) decision network. Thlge estimated, thus the size of the output layer can be larger.

disjunct phonetical classes used in this approach are VOWz . e the sum of all output nodes has to stay the same,
els, fricatives, glides, plosives, nasals and affricates. Tho e networks with less training data will become smaller.

classes were used to train the decision network. The o "For the approach in Fig. 2 the total number of parame-

Jt(\jv(zatgﬁ Iﬁgcnﬁgrittigar?ira"snslég t:r? dﬂﬁéu?rllé?égrsm;“%gbvsi'tqrs is exactly the same as in the baseline approach, but the
P Eomputational effort is much smaller, because each of the

ning neurons. So this approach is very similar to the basﬁ;etworks is trained with a fraction of the whole training

line approach, with the difference, that here only classes @t ", the case that all networks get the same amount
phones are looked at and at the baseline system makes H?ﬁaining data, the computational effort for this approach

of the phones itself. Another difference is the size of th . .
output layer, which is only 10% of the size of the base"ngompared to the baseline system can be computed as:

system. OL size - #of networks - % of training data
After the training of the decision network, all feature

vectors are quantized by the decision network. In a sec-

ond step, using all feature vectors, which have been quawthich equals to the percentage of training data each net-

(4)

size of the baseline output layer
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Figure 3. Hierarchical decision tree network

work sees, because the size of the output layer times thetical class and the label index of the winning neuron.
number of networks equals to the size of the baseline outhe basic structure of this approach is like the previous
put layer. So for the case in Fig. 2 the computational effodne. There is a decision network, which decides which
is 5% of the baseline system plus the training time for thef the second level networks are chosen. The main dif-
decision network, which is 10% of the baseline trainindgerence between this approach and the previous one is the
time. In total this gives 15% of the original training time. topology of the decision network. Here the decision net-
work has a hierarchical (tree) structure. The growing of
3.2. Hierarchical decision network the structure itself is self organizing. This is done by using
The second approach is not to choose a fixed number &fset of non disjunct phonetical classes. For each node all
classes, but to use a phonetical tree, similar to the aplass-splitting are tested, and the node which gives the best
proaches in [4, 5], with the difference that here the godnutual information is split up into two nodes, one contain-
is to maximize the mutual information between some phdng the members of the found phonetical class and one with



the rest. This procedure is repeated, until the desired num

ber of leaves is reached. With this tree structure one can System | mutual |nf9rm.| recognition rate|
always find the phonetical class, that will improve the mut Baseline MMINN |~ 2.079 bit 75.62 %
tual information best. The number of end nodes (leaves) s __Flat network 2.078 bit 74.99 %
predefined (as in the previous approach) and for each ledve Tree network 2.095 bit 75.75%

a second network is trained, as in the first approach. An  Table 2. Performance of the different topologies
example for this topology is given in Fig. 3. N i
In each node of the tree there is again a neural network. Table 2 shows the recognition rates for the baseline sys-

The size of each network node is dependent on the amodff? and the two new topologies. The recognition rate re-

of training data for this node. For this work the first nodel0rted is the average recognition rate (accuracy) for the 4

(root node) has an output layer size of 16. RM test sets (feb89-sep92). The first topology achieves
The training of each network node consists of thre@€2rly the same value for the mutual information, but is

steps. In the first step the mutual information between tH¥Crse in recognition rate than the baseline system. With

actual phonetical class and the index of the output neuroffi Second, hierarchical approach, the value of the mutual

is maximized. In the next step one has to determine, whicRformation is even higher than in the baseline case and the

of the output neurons belong to the class and which do ng€cognition result is nearly the same.

The decision is made by determining which class gets the

majority on each neuron. The third step is to repeat the first 5. CONCLUSIONS

two steps with every possible phonetical class, to find thehe new topologies for MMINNSs are both faster to train

one, which is best in the actual node. This is performed fahan the baseline system in [1]. The first approach is very

all nodes, and the node which gives the best value for tifast, and uses only about 15% of the training time. On the

mutual information is expanded. other side, this approach leads to recognition rates, which
The structure of the second layer network is the same age about 0.5% (absolute) worse, than the recognition rates

for the flat topology. Thus the computational effort for theof the baseline system. The second topology achieves the

second layer is the same as above. The computational e&me recognition rate as the baseline system (even 0.1%

fort for the hierarchical decision tree depends on the nunbetter), and uses only 90% of the computational effort.

ber of phonetical classes used. In this approach 100 classes

were used. Those were e.g. vowel, front-vowel, fortis, 6. REFERENCES
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