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ABSTRACT

In this paper we present an integrated approach for recog-

nizing both the word sequence and the syntactic-prosodic

structure of a spontaneous utterance. We take into ac-

count the fact that a spontaneous utterance is not merely

an unstructured sequence of words by incorporating phrase

boundary information into the language model and by pro-

viding HMMs to model boundaries. This allows for a dis-

tinction between word transitions across phrase bound-

aries and transitions within a phrase. During recognition,

the syntactic-prosodic structure of the utterance is deter-

mined implicitly. Without any increase in computational

e�ort, this leads to a 4% reduction of word error rate,

and, at the same time, syntactic-prosodic boundary labels

are provided for subsequent processing. The boundaries

are recognized with a precision and recall rate of about

75% each. They can be used to reduce drastically the

computational e�ort for parsing spontaneous utterances.

We also present a system architecture to incorporate ad-

ditional prosodic information.

1. Introduction

In written language, the syntactic structure of a sentence

is indicated by punctuation marks, e.g. commas and full

stops. If all punctuation marks are removed from a text

(together with the capitalization of words at the begin-

ning of a sentence), it becomes much more di�cult to

understand the text for a human reader. Nevertheless,

one should usually be able to reconstruct the punctuation

marks. This is possible, because syntactic phrasing is {

on the surface { at least partly indicated by word order;

for instance, a wh{word after an in�nite verb normally

indicates a syntactic boundary before the wh{word:

\Wir k�onnen gehen. Wer kommt mit?"

( \We can go. Who will join us?")
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In these cases, punctuationmarks add redundancy to make

a text more understandable. Yet, in some cases, punctua-

tion marks are necessary to resolve ambiguities:

\Ich will. Sie nicht." vs. \Ich will Sie nicht."

(\I want to. You don't/She doesn't." vs.

\I don't want you.")

In spoken language, especially in spontaneous speech,

prosodic boundaries are as important for understanding an

utterance as punctuation marks are in written language.

Words which \belong together" from the point of view of

meaning are grouped into prosodic phrases, and it is widely

agreed upon that there is a high correspondence between

prosodic and syntactic phrase boundaries [8, 2, 10, 4].

Prosodic boundaries are often marked by silence periods,

and sometimes by \non-verbals" such as \uh", and they

are usually indicated by speci�c energy and fundamental

frequency (f0) contours and by durational variations of the

surrounding syllables [3]. Also, as in the case of punctua-

tion marks in written language, they are partly indicated

by word order. It has been shown that classi�ers based on

prosodic information can quite reliably detect syntactic

boundaries, and that classi�ers based on n-gram language

models can predict prosodic boundaries [4]. A classi�er

based on both sources of information (Figure 1) is used

to label word hypotheses graphs (WHGs) in the German

Verbmobil system that is able to translate spontaneous

utterances in an appointment scheduling task [4]. The

boundary labels are then used by the syntactic analysis

module to reduce the number of alternative readings. The

parsing of word graphs computed on Verbmobil spon-

taneous speech data was sped up by 92% and the num-

ber of parse trees could be reduced by 96% with the use

of these automatically classi�ed syntactic-prosodic bound-

aries [4, 6].

We believe, that syntactic-prosodic boundary information

is also useful in an earlier stage of spontaneous speech

processing. It is well known, that state of the art speech

recognizers are based on two sources of knowledge: acous-

tic information and language model information. Statis-

tical language models provide the probability of a given

word sequence based on a rather simple model: it is as-

sumed that a spoken utterance is an unstructured sequence
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Figure 1: Architecture of a prosodic classi�er that is

based on the result of the word recognizer (as used in

the Verbmobil system [4]). The prosodic classi�er it-

self is based on a multi layer perceptron (MLP) that takes

the prosodic features as input and on an n-gram language

model that takes into account the surrounding word con-

text.

w1; w2; :::wn of words. Obviously, this is not true. By in-

tegrating models for syntactic-prosodic phrase boundaries

into the word recognizer and into the statistical language

model, the word recognizer can incorporate information

about the structure of the utterance.

An integrated model of sequences of words and boundaries

allows for a distinction between word transitions across

phrase boundaries and transitions within a phrase, which

is an obvious advantage: Words at the beginning of a new

phrase correlate less strongly with the preceding word than

words within the same phrase. Instead, the fact that they

are separated from their predecessor by a phrase bound-

ary should contribute a great amount of information when

language model probabilities are calculated.

We therefore propose an integrated approach to recognize

the word sequence and the prosodic boundaries in one

step. We use HMMs to model phrase boundaries and inte-

grate them into the stochastic language model. Based only

on the acoustic features of our baseline word recognizer

we already obtain recognition rates for phrase boundaries

that are comparable to those achieved with the sequen-

tial approach shown in Figure 1. Some preliminary ex-

periments have been conducted to investigate methods of

.
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Figure 2: Proposed architecture of an MLP{HMM hybrid

system for integrated classi�cation of prosodic boundaries

using additional prosodic features. The MLP estimates the

probability of a prosodic boundary in the current frame.

The two input streams of the word recognizer are treated

as stochastically independent. The prosodic features and

the MLP are optional; in the case of the strongly syn-

tactically motivated boundaries used in the experiments

reported in this paper, the prosodic input stream did not

improve the results signi�cantly.

e�ectively integrating additional prosodic features. We ob-

tained some promising results using an MLP-HMM-hybrid

architecture as shown in Figure 2. However, the improve-

ments were not signi�cant compared to the integrated ap-

proach without additional prosodic features. This paper

will therefore focus on integrating prosodic boundaries into

a word recognition system without using additional fea-

tures.

In our research we used data which were labelled using

a labelling system that is described in Section 2. How

we modelled phrase boundaries is detailed in Section 3.

Our experimental results in Section 4 show that integra-

tion of prosody and speech recognition is a promising idea

to further improve recognition and understanding of spon-

taneous speech. Possible extensions of our approach are

pointed out in Section 5.



2. Syntactic-Prosodic Boundary

Labels

Starting point for the annotation of our material with

syntactic{prosodic labels was the assumption that there

is a strong { albeit not perfect { correlation between syn-

tactic phrasing and prosodic phrasing, cf. [5, 9, 7]. This

assumption could be corroborated earlier in experiments

with German read speech where similar labels could be

used successfully for the training of prosodic classi�ers,

cf. [4]. In order to save time, we annotated these bound-

aries only using the written word chain. The `syntactic-

prosodic' boundaries relevant for our present purpose { we

called them M3-boundaries { are those syntactic bound-

aries that are expected to be marked prosodically, as can

be seen in the following example:

\vielleicht stelle ich mich kurz vorher noch vor M3

mein Name ist Lerch "

(\perhaps I should �rst introduce myself M3 my

name is Lerch")

This type of boundary can be labelled very fast, given an

existing transliteration of a corpus. As we use the data

to train statistical models, we tolerate a certain amount

of labelling errors or unconsistencies. Our primary goal is

to make large amounts of labelled data available at little

cost.

In the Verbmobil data, the average length of a prosodic

phrase between two M3-labels is 5.4 words, while the av-

erage turn length is 22 words. Details on the data used in

our experiments are given in Section 4. More details on

our labelling scheme can be found in [1].

3. Models for Phrase Boundaries

The speech recognition system that we used in our research

is HMM-based. Each word is modelled as a sequence of

polyphone models. We use a two pass recognizer: During

the bigram based �rst pass a lattice of possible alternative

word sequences is constructed. In the �nal pass a 4-gram

language model is applied. In this framework we include

HMMs for phrase boundaries in order to have them recog-

nized.

In [4] it was shown that the syntactic-prosodic M3-labels

as described in the previous section often happen to occur

in combination with non-verbals, pauses or �lled pauses.

Non-verbals and �lled pauses are treated like words in our

baseline system; they are represented by HMMs. In order

to take this fact into account we trained models for several

combinations between boundaries and non-verbals. So, �-

nally, we had a one state model for a phrase boundary

without a non-verbal or pause, phrase boundaries in com-

bination with non-verbals or pauses, and models for those

non-verbals and pauses without a phrase boundary to al-

low for them to occur without phrase boundary.

During the word recognizer search procedure, several dif-

ferent possibilities are now considered for each transition

from word wi to word wi+1 (In the following, we only con-

sider the bigram scores; the higher order language model

scores are calculated accordingly):

1. There is no boundary or non-verbal) Use the bigram

score p(wi+1 j wi)

2. There is a boundary M3 (possibly marked by a si-

lence period or a non-verbal) ) Use the bigram

scores p(M3 j wi) when entering the M3-model and

p(wi+1 j M3) when entering wi+1.

3. There is no boundary but a non-verbal or silence pe-

riod NV) Use a constant unigram probability p(NV)

when entering the NV-model, and use p(wi+1 j wi)

when entering wi+1. Thus, non-verbals or silence

periods that do not mark syntactic boundaries are

treated as random events that do not depend on the

surrounding word context. Consequently, they are ig-

nored when the probability of the following word is

calculated.

Based on these language model scores and on the acoustic

scores of the HMMs the search algorithm of the recognizer

(beam-search or A? search, respectively) will now deter-

mine the optimal solution for each word-word transition.

4. Experimental Results

The experiments reported in this paper were performed on

a subset of the German Verbmobil corpus. The training,

validation, and test samples are shown in Table 1.

sample turns words M3 phrase boundaries

training 11714 258956 36039

validation 48 1044 137

test 268 4783 768

Table 1: Training, validation, and test data. The �gures

for phrase boundaries do not contain the trivial boundaries

at the beginning or end of a turn.

We used a SCHMM word recognizer with a codebook size

of 512 classes. No speaker adaptation was performed and

only intra word subword models were used. A bigram lan-

guage model was applied in the �rst pass of the recogni-

tion process and a 4-gram language model was applied in

the second pass. The vocabulary size was 2860 words; 6

additional boundary models were used in one of the exper-

iments (as described in Section 3). The results are given

in Table 2; they were calculated based on the word chain,

i.e. the boundary labels were removed from the recognizer

results. The realtime factors were measured on an HP735

workstation (99Mhz).

Although the search space of the system with integrated

phrase boundaries is much bigger (there is an optional

phrase boundary after each word) the integrated approach

is even slightly faster than the baseline system. This is

probably due to the fact that the integrated language

model has a much lower perplexity between two phrase



boundaries, because no word transitions across phrase

boundaries were used to train these probabilities. A di-

rect comparison of perplexity �gures is not possible, be-

cause the total number of symbols (words vs. words and

boundaries) is di�erent in both setups.

word error rate real time factor

baseline 32.6 % 18.2

with boundaries 31.3 % 18.0

Table 2: Word error rates

The evaluation of the recognized boundaries was per-

formed in the following manner: First, an alignment based

on the minimum Levenshtein-distance criterion is per-

formed between the recognized word chain and the refer-

ence transliteration. During this procedure the boundary

labels are treated just like words. Then, all pairs of hy-

pothesized symbols and reference symbols that include at

least one boundary are used to evaluate the quality of the

implicit boundary classi�cation. We achieved a precision

of 75.7% and a recall of 74.5%. Precision, in our case, is

the number of correctly classi�ed boundaries divided by

the total number of hypothesized boundaries. Recall is

calculated by dividing the number of correctly classi�ed

boundaries by the total number of boundaries in the ref-

erence transliteration.

For a comparison, we evaluated the prosodic classi�er that

is integrated into theVerbmobil system (cf. Section 1) on

the word chains (after removing the boundary labels) that

were produced by the integrated approach. This module

uses a Multi Layer Perceptron (MLP) classi�er based on a

set of 276 prosodic features combined with an n{gram lan-

guage model. The boundary labels produced by this setup

were evaluated in the same manner, and the results were

almost identical: 75.1% precision and 74.7% recall. This

is surprising, because the integrated approach did not use

any prosodic features, only the cepstral features used in

our baseline word recognizer. We believe, that language

model information is incorporated by the integrated ap-

proach a little more e�ectively, and this compensates for

the lack of prosodic information. Language model infor-

mation is obviously more important than prosodic infor-

mation for classifying M3 boundaries, because these are

labelled based on syntactic criteria without actually lis-

tening to the utterances.

Enhancing the integrated approach with prosodic features

using several di�erent system architectures resulted not

yet in a signi�cant improvement of recognition rates. The

most promising architecture is shown in Figure 2. The

crucial problem we have not yet solved in a satisfactory

manner is to �nd an adequate training procedure for the

MLP that is suitable for this setup.

5. Conclusion and Future Work

Integration of phrase boundaries into the word recognizer

not only provides useful information on the structure of

the utterance that can be used for subsequent processing,

it also improves the word recognition rate. This is even

true when no additional prosodic features are added to

the baseline feature set. We achieved a word error rate

reduction of 4%, and the recognition rates for the prosodic

boundaries were equal to those achieved with a subsequent

prosodic classi�er that uses an MLP based on a large set

of prosodic features combined with an n-gram language

model.

Obviously, a spontaneous utterance is more than merely an

unstructured sequence of words. Therefore, a model that

includes information on the structure of the utterance is

superior to a model that regards an utterance as a simple

word sequence.

Future research will focus on the e�ective integration of

prosodic information. MLP-HMM-hybrid architectures

such as the one depicted in Figure 2 are a promising ap-

proach to tackle the di�erent distributional properties of

the acoustic and prosodic feature sets. We believe, that

prosodic information will be useful to further improve the

classi�cation of phrase boundaries, which will also lead to

a further reduction of word error rate.
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