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ABSTRACT
Part of the problems in noise robust speech recognition can be
attributed to poor acoustic modeling and use of inappropriate
features. It is known that the human auditory system is superior
to the best speech recognizer currently available. Hence, in this
paper, we propose a new two-stream feature extractor that
incorporates some of the key functions of the peripheral auditory
subsystem. To enhance noise robustness, the input is divided
into low-pass and high-pass channels to form so-called static
and dynamic streams. These two streams are independently
processed and recombined to produce a single stream,
containing 13 feature vector components, with improved
linguistic information. Speaker-dependent isolated-word
recognition tests, using the proposed front-end, produced an
average 39% and 17% error rate reductions, over all noisy
environments, as compared to the standard Mel Frequency
Cepstral Coefficient (MFCC) front-ends with 13 (statics only)
and 26 (statics and deltas) feature vector components,
respectively.

1. INTRODUCTION
It is widely acknowledged that the performance of the current
state-of-the-art speech recognizers starts to drop drastically in
noisy conditions. It is hence clear that new technological
breakthroughs are required for a major performance
improvement. In order to make significant improvements, we
need to acquire more basic knowledge in the area of feature
extraction. As we know, modern speech recognizers still
perform much worse than humans both in clean and noisy
environments [1]. Our work presented in this paper is based on
the assumption that front-ends based on human auditory system
should be superior to other feature extraction approaches.
Modeling the complete human auditory system is, however, not
possible since the system is only partially understood.
Nevertheless, some parts of the system are known and can hence
be utilized to improve the feature extraction unit.

The human auditory system has an amazing ability to separate
and understand sounds. It is commonly believed that temporal
information plays a key role in this ability, more important than
the frame-based spectral representation that is traditionally
utilized in ASR front-ends. The conventional methods for
incorporating temporal information into speech features apply
linear regression to a series of successive cepstral vectors to
generate difference cepstra [2], namely the delta and delta-delta
coefficients. Significant improvements in performance have
been achieved by adding the difference cepstra. However, the
dynamic information provided by the linear regression is rather

limited and methods that provide enhanced temporal
information have been proposed. The relative spectral (RASTA)
technique proposed in [3] to enhance the temporal features was
shown to increase the recognition performance with
convolutional channel noise. RASTA did not, however, give
significant improvement in our speaker-dependent isolated-word
recognition tests in noisy car environments. We recently
proposed a new auditory front-end based on short-term
adaptation [4]. In this paper, we propose further improvements
to our earlier model that utilizes the temporal information more
effectively.

2. AUDITORY FEATURE EXTRACTION
Several feature extraction techniques inspired by the human
auditory system have been proposed over the past few years.
However, the human auditory system is not thoroughly
understood and hence can not be accurately modeled. In this
paper, we therefore take only the critical auditory functions
relevant to speech recognition task into account to build the
auditory front-end. The basic idea is to incorporate nonlinear
frequency scaling, intensity compression (loudness), short-term
adaptation and firing rate of auditory neurons into the model.

A block diagram of the auditory front-end is given in Fig. 1. The
power spectrum of each frame is computed by applying FFT on
windowed speech samples after pre-emphasis. Intensity to
loudness conversion, also called as cubic root compression, i.e.:
loudness=(intensity)1/3, is then applied. This operation is an
approximation to the power law of hearing and simulates the
nonlinear relation between the intensity of sound and its
perceived loudness.
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Fig. 1: Block diagram of the auditory front-end.



An approximation to the unequal sensitivity of human hearing at
different frequencies is given by equation 1. This equal-loudness
correction simulates the sensitivity of hearing at about the 40 dB
level [3].
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A filter bank can be regarded as a crude model of the
transduction of the basilar membrane in the human auditory
system. A set of 24 band-pass filters, based on the mel scale, is
used to model the basilar membrane.

Next, the inner hair cell and attached auditory neuron is modeled
as the transduction from loudness to firing rate. In the
Schroeder-Hall model [5], “quanta” of an electrochemical agent
are generated at a fixed average rate r. The probability of firing
of an attached auditory neuron is directly proportional to the
number of quanta currently existing and to the instantaneous
input stimulus level s(t) (the square root of loudness). The
quanta are used up by producing spontaneous firings gs and
natural decay gd without causing any firing. The number of
quanta as a function of time and the instantaneous firing rate f(t)
of auditory neuron are described by the equation:
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where n(t) is the number of quanta at time instant t, r is the
constant quanta generation rate, s(t) is the square root of
loudness of the input stimulus, c is a constant scaling factor and
f(t) is the instantaneous firing rate of auditory neuron attached to
the inner hair cell. Transforming the above equation into
discrete form, we have the following iterative form of the
discrete nonlinear equation group:
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By applying discrete cosine transform (DCT) on the firing rates
from all the sub-channels, we obtain 13 de-correlated features to
form the feature vector.

A mismatch between training and testing environments can
produce a severe degradation in the recognition performance. To
reduce this mismatch, the normalization scheme proposed in [6]
is carried out on the feature vector domain. With the
normalization, short-term means and variances of each feature
vector component are set to zero and one, respectively,
regardless of environments.

2.1 Two-Stream Approach
The spectral trajectories of the feature vector components were
studied in order to enhance the noise robustness of the
previously proposed auditory front-end. Fig. 2 shows the ratio of
the averaged spectra between the feature vector component
trajectories of clean speech and car noise. A test set containing
110 sentences, spoken by seven male and four female speakers,
was chosen from the TIMIT database. The ratio was computed
by averaging across all the 13 feature vector components over
all the utterances. We can observe that there is high local SNR

in low frequency band, and the local SNR decreases as the
frequency increases. Furthermore, it has been shown that the
frequency content beyond a certain frequency value of feature
vector component trajectory of the speech contains a significant
amount of estimation error [7]. The front-end should be more
noise robust if we can utilize the information according to the
local SNR. The overall SNR could be increased by weighting
the lower band more than the higher one. This approach also
reduces the sharp peaks at the transitions produced by the short-
term adaptation, resulting in parameter statistics that fit better
into our HMM framework.
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Fig. 2: Ratio of the averaged spectra of the feature vector
component trajectories between clean speech and car noise
normalized to be one at zero frequency.

In order to realize the weighting, the original feature stream,
obtained from DCT, is split into low and high frequency
channels. These two channels are later recombined by proper
weighting and subjected to normalization to form the final
feature vector.

We assume that the transfer functions of low-pass Hl(z) and
high-pass Hh(z) filters are complementary, i.e.
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Therefore the equivalent transfer function H(z) of the
recombined stream is given by the following equation:
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where δ (-1 ≤ δ ≤ 1) is defined as weighting factor, and the
weights wl=1+δ and wh=1-δ. Obviously, H(z) is low-pass, all-
pass and high-pass filter when δ is 1, 0 and -1, respectively. Fig.
3 shows the amplitude response of the low-pass, high-pass and
combined filter with δ=0.4. Based on our experiments, the
optimum cut-off frequency was found to be around 5 Hz. Fig. 3
also shows the amplitude response of the conventional linear
regression filter used to generate the delta coefficients. It is clear
from the figure that the new high-pass filter contains more
dynamic information than the conventional filter.

3. EXPERIMENTS
We tested the two-stream auditory front-end in an isolated-word
speaker-dependent recognition task. The test database contained
30 confusable Finnish first names spoken by six male and two
female speakers. The recordings were carried out in an office



environment during three separate sessions (12 repetitions of
each name overall).
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Fig. 3: Frequency response of the low-pass, high-pass (both
seen as dashed line), combined filter (solid line, δ=0.4, cutoff
frequency = 5 Hz) and the linear regression filter (dotted line,
filter of length 7) .

Continuous Gaussian density left-to-right state duration
constrained Hidden Markov Models (HMMs) [9] were estimated
with a single training utterance, recorded in clean environment.
Noise from a Volkswagen car traveling at 115 km/h was
recorded and further mixed with clean speech to generate the
noisy test utterances under certain signal-to-noise ratios (SNR).

The parameters (r, c, gd ,gs) of the auditory model (see equation
3) were determined according to the relevant physiological data
mentioned in [5][8]. First of all, firing rates in response to a tone
burst can be simulated as the sum of two decaying exponentials.
The time constant of fast adaptation is about 2 ms, which is too
short to be significant in the frame-based features where frame
shift is 10 ms. Hence we have not considered fast adaptation in
our approach. Another time constant (around 30 ms) is
associated with the decreasing response to a stimulus which is a
general characteristic of auditory neurons. When the stimulus is
turned off, the firing rate recovers to the spontaneous rate with a
time constant of 50 ms. In order to optimize the weighting factor
for the two-stream approach, recognition experiments were
initially carried out at different SNRs. As shown in Fig. 4, the
optimum weighting factor δ was found be around 0.4 ∼ 0.6.
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Fig. 4: Recognition rates at different SNRs for various values of
the weighting factor δ.

3.1 Performance Evaluation
We randomly picked an utterance from TIMIT database (“she
has your dark suit in greasy wash water all year”) in order to
illustrate a simple comparison between the MFCC [2],
previously proposed auditory front-end and the new two-stream
auditory front-end. In order to verify the noise robustness of the
different approaches, noisy speech was generated by adding car
noise to clean speech at different SNRs. Each feature was
normalized by removing the mean and normalizing the variance
to be one. With each SNR, cross-correlation of the features was
calculated between the clean and the corresponding noisy
speech to measure their similarity.  Fig. 5 compares the cross-
correlation between the clean and noisy features for the three
front-ends at different SNRs. Obviously, if the cross-correlation
value is low, the feature is corrupted by the noise and if the
cross-correlation value is high, it means that the feature is noise
robust. It is clear that the features produced by two-stream
auditory front-end are more noise robust than the features
produced by the other front-ends in this case study, and the
auditory front-end is more noise robust than the MFCC front-
end.
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Fig. 5: Similarity measure of the features between clean and
noisy speech at the different SNR conditions. The features were
generated by the two-stream auditory (solid line), previously
proposed auditory (dashed line) and MFCC (dash-dot line)
front-ends.

Recognition tests were carried out between the previously
proposed auditory front-end and the two-stream auditory front-
end to compare their performance. Both approaches had a
feature vector dimension of 13.

Fig. 6 shows the recognition results using the two front-ends. It
is clearly seen that the two-stream auditory front-end
outperforms the previously proposed auditory front-end. The
average error rate reduction, over all noise conditions, was
found to be around 27%.

We also compared the two-stream auditory front-end approach
with standard MFCC front-end. Fig. 7 presents the results for
the MFCC front-end with only static features (MFCC13) and
also with both statics and deltas (MFCC26). Delta-delta
coefficients were not used in these speaker dependent tests, as
they produced worse results as compared to MFCC with statics
and deltas. It can be clearly seen that the two-stream auditory
approach outperforms the MFCC front-ends in all noisy



conditions. There is an average error rate reduction of 39% and
17% for the new approach over MFCC13 and MFCC26,
respectively. However there seems to be a small decrease in the
recognition performance in clean conditions

Finally, the superiority of the two-stream approach is
demonstrated by comparing it to the previously proposed
auditory front-end with delta features, computed using linear
regression, thereby having a feature vector dimension of 26. It
can be seen from Table 1 that the proposed two-stream auditory
front-end, with a feature vector dimension of 13, produces a
better recognition accuracy than the auditory front-end with
delta features.
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Fig. 6: Recognition rates at different SNRs using previously
proposed auditory front-end (AudFE) and two-stream auditory
front-end (two-stream AudFE).
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Fig. 7: Recognition rates at different SNRs using MFCC with
only static features (MFCC13), MFCC with static and delta
features (MFCC26) and the two-stream auditory front-end.

4. CONCLUSIONS
In this paper, we proposed a new noise robust two-stream
auditory feature extraction method. Speaker-dependent isolated-
word recognition tests performed using the new approach show
that this front-end outperforms the conventional MFCC front-
end in terms of recognition accuracy in all noisy environments.
However there is a small decrease in the recognition accuracy in
clean conditions, which requires further investigation. These
results look promising enough to continue our study in this

auditory domain to further improve our model and increase its
performance.

Table 1: Recognition rates obtained with different front-ends at
different SNRs.

SNR MFCC13 MFCC26 AudFE AudFE26 tsAudFE

clean 99.43 99.73 99.09 99.02 99.13
5 96.36 97.58 97.12 97.39 97.88
0 91.59 94.58 93.64 95.61 96.14
-5 80.42 86.55 84.55 88.60 88.45
-10 53.41 63.11 58.98 67.99 69.92

Ave. 84.24 88.31 86.67 89.72 90.30
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