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ABSTRACT limited and methods that provide enhanced temporal

. . . information have been proposed. The relative spectral (RASTA)
Part of the problems in noise robust speech recognition cang

attributed to poor acoustic modeling and use of inappropria own to increase the recognition performance with

features. It is known that the human auditor_y system is su'.Oericcftlinvolutional channel noise. RASTA did not, however, give
toatI:aer bezt sp;geg: ere‘(a:logr;]r(:zert cgr;tterrét;yma"fgg?blg' :i?;;'o Irn tﬂgi nificant improvement in our speaker-dependent isolated-word
paper, we prop W Wo-s ure ex _i}g ognition tests in noisy car environments. We recently
incorporates some of the key functions of the peripheral audlt:(?/ posed a new auditory front-end based on short-term

%hnique proposed i8] to enhance the temporal features was

subsystem. To enhance noise robustness, the input is divi ptation [4]. In this paper, we propose further improvements

Into Iow-pas_s and high-pass channels to form sq-called StlIE our earlier model that utilizes the temporal information more
and dynamic streams. These two streams are |ndependeré ctively

processed and recombined to produce a single stream,
containing 13 feature vector components, with improved

linguistic  information.  Speaker-dependent isolated-word 2. AUDITORY FEATURE EXTRACTION

recognition tests, using the proposed front-end, produced Bveral feature extraction techniques inspired by the human
average 39% and 17% error rate reductions, over all noi q P y

environments, as compared to the standard Mel Freque a¥1dlt0ry system have been proposed over the past few years.

Cepstral Coefficient (MFCC) front-ends with 13 (statics only ¥Jwever, the human auditory sysiem is not thoroughly
. nderstood and hence can not dxurately modeled. In this

and 26 (statics and deltas) feature vector components " ; -
respectively. paper, we therefore take _o_nly the c_rltlcal auditory fun_ctlons

relevant to speech recognition task into account to build the

auditory front-end. The basic idea is to incorporate nonlinear

1. INTRODUCTION frequency scaling, intensity compression (loudness), short-term

It is widely acknowledged that the performance of the Currer.;:1tdaptat|on and firing rate of auditory neurons into the model.

state-of-the-art speech recognizers starts to drop drastically Arblock diagram of the auditory front-end is given in Fig. 1. The
noisy conditions. It is hence clear that new technologicgower spectrum of each frame is computed by applying FFT on
breakthroughs are required for a major performanceindowed spech samples after pre-emphasis. Intensity to
improvement. In order to make significant improvements, wludness conversion, also called as cubic root compression, i.e.:
need to acquire more basic knowledge in the area of featuoaidness=(intensity}’, is then applied. This operation is an
extraction. As we know, modern speech recognizers sti#lpproximation to the power law of hearing and simulates the
perform much worse than humans both in clean and noiswnlinear relation between the intensity of sound and its
environmentg1]. Our work presented in this paper is based operceived loudness.

the assumption that front-ends based on human auditory system

should be superior to other feature extraction approaches. Vo i

Modeling the complete human auditory system is, however, not I
possible since the system is only partially understood.

Nevertheless, some parts of the system are known and can henggy Frame Hamning
be utilized to improve the feature extraction unit. ) Preemphass
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The human auditory system has an amazing ability to separate / N
and understand sounds. It is commonly believed that temporal wl |
information plays a key role in this ability, more important than
the frame-based spectral representation that is '[raditionall}gawre v Lo
utilized in ASR front-ends. The conventional methods for _ -
incorporating temporal information into speech features apply & Nomaliaton
linear regression to a series of successive cepstral vectors to
generate difference cepsfid, namely the delta and delta-delta
coefficients. Significant improvements in performance have. . .
been achieved by adding the difference cepstra. However, t&@' 1: Block diagram of the auditory front-end.
dynamic information provided by the linear regression is rather
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An approximation to the unequal sensitivity of human hearing & low frequency band, and the local SNR decreases as the
different frequencies is given by equation 1. This equal-loudneggquency increases. Furthermore, it has been shown that the
correction simulates the sensitivity of hearing at about the 40 dBquency content beyond a certain frequency value of feature

level[3]. vector component trajectory of theeggh contains a significant
amount of estimation error [7]. The front-end should be more
H (w) =1 151E\/ (w? +144 x10%)w? & noise robust if we can utilize the information according to the
' (w? +16 x10*)(w? + 961 x10*) local SNR. The overall SNR could be increased by weighting

the lower band more than the higher one. This approach also
reduces the sharp peaks at the transitions produced by the short-
A filter bank can be regarded as a crude model of therm adaptation, resulting in parameter statistics that fit better
transduction of the basilar membrane in the human auditoliyto our HMM framework.
system. A set of 24 band-pass filters, based on the mel scale, is
used to model the basilar membrane. 1

0.9

Next, the inner hair cell and attached auditory neuron is model .
as the transduction from loudness to firing rate. In th o
Schroeder-Hall moddb], “quanta” of an electrochemical agent go.
are generated at a fixed average rat€he probability of firing go,s
of an attached auditory neuron is directly proportional to th=°+
number of quanta currently existing and to the instantaneo °°
input stimulus levels(t) (the square root of loudness). The °*
quanta are used up by producing spontaneous firgggand

0.1

natural decaygy without causing any firing. The number of ™ e s

guanta as a function of time and the instantaneous firing(tate

of auditory neuron are described by the equation: Fig. 2: Ratio of the averaged spectra of the feature vector
component trajectories between cleareesfh and car noise

DEdZit) =1 -(g, + 9.+ cO5t) () @ normalized to be one at zero frequency.

B f() = (9, + cis) ()

In order to realize the weighting, the original feature stream,
wheren(t) is the number of quanta at time instant is the obtained from DCT, is split into low and high frequency
constant quanta generation ratf) is the square root of channels. These two channels are later recombined by proper
loudness of the input stimulusjs a constant scaling factor and weighting and subjected to normalization to form the final
f(t) is the instantaneous firing rate of auditory neuron attached f@ature vector.

e el i cell ansloring e sbove SUaLon e sssume that the vansier nions of opags) anc
. . - enigh-passl—|h(z) filters are complementary, i.e.
discrete nonlinear equation group:

SN S TCRE Hi(2)+ H(2) =1 @
O 1+g,+ g4 +cls(k) 3 Therefore the equivalent transfer functiod(z) of the
Hf (k) = (g, + c Os(k)) (k) recombined stream is given by the following equation:

By applying discrete cosine transform (DCT) on the firing rates H(z)=w H,(z)+w,H,(2)
from all the sub-channels, we obtain 13 de-correlated features to =25 H,(2)+ (1-3) (5)
form the feature vector. : '

A mismatch between training and testing environments caMered (-1 < < 1) is defined as weighting factor, and the
produce a severe degradation in the recognition performance. W8ightswi=1+ & and wy=1-4. Obviously,H(z) is low-pass, all-
reduce this mismatch, the normalization scheme proposed in f§ss and high-pass filter whéns 1, 0 and -1, respectively. Fig.
is carried out on the feature vector domain. With th& shows the amplitude response of the low-pass, high-pass and
normalization, short-term means and variances of each feat@@mbined filter with 5=0.4. Based on our experiments, the
vector component are set to zero and one, respectiveptimum cut-off frequency was found to be around 5 Hz. Fig. 3
regardless of environments. also shows the amplitude response of the conventional linear
regression filter used to generate the delta coefficients. It is clear

_ from the figure that the new high-pass filter contains more
2.1 Two-Stream ApproaCh dynamic information than the conventional filter.

The spectral trajectories of the feature vector components were

studied in order to enhance the noise robustness of the

previously proposed auditory front-end. Fig. 2 shows the ratio of 3. EXPERIMENTS

the averaged spectra between the feature vector component ] ) )

trajectories of clean speech and car noise. A test set containi¥§ tested the two-stream auditory front-end in an isolated-word
110 sentences, spoken by seven male and four female Speawggker-depend_ent_ recognition task. The test dgtabase contained
was chosen from the TIMIT database. The ratio was computéfl confusable Finnish first names spoken by six male and two
by averaging across all the 13 feature vector components of@male speakers. The recordings were carried out in an office
all the utterances. We can observe that there is high local SNR



environment during three separate sessions (12 repetitions @f1  Performance Evaluation

each name overall).
) We randomly picked an utterance from TIMIT databé'sbe

has your dark suit in greasy wash water all yeairf)order to
illustrate a simple comparison between the MFQg],
previously proposed auditory front-end and the new two-stream
auditory front-end. In order to verify the noise robustness of the
N / different approaches, noisy speech was generated by adding car
L noise to clean speech at different SNRs. Each feature was
v normalized by removing the mean and normalizing the variance
A to be one. With each SNR, cross-correlation of the features was
SN calculated between the clean and the corresponding noisy
X . speech to measure their similarity. Fig. 5 compares the cross-
o515 %, .35 a0 a5 do a5 o correlation between the clean and noisy features for the three
front-ends at different SNRs. Obviously, if the cross-correlation
0Yﬁl|ue is low, the feature is corrupted by the noise and if the

;%’nSASFLZZ%ZZCﬁnSSpC%ﬁ;g dtrf]i‘letelro?gc?l?cissliﬁg(l)gz-F::ﬁsz(b cross-correlation value is high, it means that the feature is noise
' o robust. It is clear that the features produced by two-stream

f_requency = 5 Hz) and the linear regression filter (dotted IIneetuditory front-end are more noise robust than the features
filter of length 7) .

produced by the other front-ends in this case study, and the
auditory front-end is more noise robust than the MFCC front-
Continuous Gaussian density left-to-right state duratiofind.

constrained Hidden Markov Models (HMM$)] were estimated

with a single training utterance, recorded in clean environmerg *
Noise from a Volkswagen car traveling at 115 km/h wa:%osi
recorded and further mixed with clean speech to generate 13

noisy test utterances under certain signal-to-noise ratios (SNR's
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The parameters,(c, gy ,g) of the auditory model (see equation ¢ *
3) were determined according to the relevant physiological dago.s—
mentioned iff5][8]. First of all, firing rates in response to a tone 3 o}
burst can be simulated as the sum of two decaying exponentizs ,
The time constant of fast adaptation is about 2 ms, which is ti
short to be significant in the frame-based features where frarg
shift is 10 ms. Hence we have not considered fast adaptation
our approach. Another time constant (around 30 ms)
associated with the decreasing response to a stimulus which i® o
general characteristic of auditory neurovhen the stimulus is

turned off, the firing rate recovers to the spontaneous rate witrF?g_ 5: Similarity measure of the features between clean and
time constant of 50 ms. In order to optimize the weighting factqysisy speech at the different SNBnditions. The features were

for the two-stream approach, recognition experiments Wefe.nerated by the two-stream auditory (solid line), previously
initially carried out at different SNRs. As shown in Fig. 4, thebroposed auditory (dashed line) and MFCC (dash-dot line)
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optimum weighting factod was found be around 0040.6. front-ends.
recognition performance vs. weighting factor | Zg— £°¢3" Recognition tests were carried out between the previously
100.00 (== o o =) ?5 proposed auditory front-end and the two-stream auditory front-

90.00 # ,,,,,,,,,,,,,,, *— 10 end to compare their performance. Both approaches had a
feature vector dimension of 13.

Fig. 6 shows the recognition results using the two front-ends. It
is clearly seen that the two-stream auditory front-end
outperforms the previously proposed auditory front-end. The
average error rate reduction, over all noise conditions, was
found to be around 27%.

recognition rate

0 02 04 06 08 1
weighting factor We also compared the two-stream auditory front-end approach
with standard MFCC front-end. Fig. 7 presents the results for
Fig. 4: Recognition rates at different SNRs for various values dhe MFCC front-end with only static features (MFCC13) and
the weighting factop. also with both statics and deltas (MFCC26). Delta-delta
coefficients were not used in these speaker dependent tests, as
they produced worse results as compared to MFCC with statics
and deltas. It can be clearly seen that the two-stream auditory
approach outperforms the MFCC front-ends in all noisy




conditions. There is an average error rate reduction of 39% aadditory domain to further improve our model and increase its
17% for the new approach over MFCC13 and MFCC2&performance.

respectively. However there seems to be a small decrease in the

recognition performance in clean conditions Table 1: Recognition rates obtained with different front-ends at

Finally, the superiority of the two-stream approach

igifferent SNRs.

demonstrated by comparing it to the previously propos€dsNR | MFCC13 | MFCC26 | AudFE | AudFE26 | tsAudFE

auditory front-end with delta features, computed using ling

“clean | 99.43 | 99.73 | 99.09 | 99.02 | 99.13

regression, thereby having a feature vector dimension of 26-

96.36 97.58 97.12 97.39 97.88

can be seen from Table 1 that the proposed two-stream auditory
front-end, with a feature vector dimension of 13, produceg a

91.59 94.58 93.64 95.61 96.14

better recognition accuracy than the auditory front-end wjth -5 80.42 86.55 [ 84.55 88.60 88.45

delta features. -10 53.41 63.11 58.98 67.99 69.92

Ave. 84.24 88.31 86.67 89.72 90.30
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Fig. 6: Recognition rates at different SNRs using previouslf'
proposed auditory front-end (AudFE) and two-stream auditory
front-end (two-stream AudFE).
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Fig. 7: Recognition rates at different SNRs using MFCC wittg
only static features (MFCC13), MFCC with static and delta
features (MFCC26) and the two-stream auditory front-end.

4. CONCLUSIONS

In this paper, we proposed a new noise robust two-stream
auditory feature extraction method. Speaker-dependent isolated-
word recognition tests performed using the new approach show
that this front-end outperforms the conventional MFCC front-
end in terms of recognition accuracy in all noisy environments.
However there is a small decrease in the recognition accuracy in
clean conditions, which requires further investigation. These
results look promising enough to continue our study in this
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