VECTOR QUANTIZER ACCELERATION FOR AN AUTOMATIC SPEECH
RECOGNITION APPLICATION

A. J. Araujd? V. C. Perd M. N. Souza

'FEUP — Faculdade de Engenharia da Universidade do Porto
’INESC - Instituto de Engenharia de Sistemas e de Computadores
Pr. da Republica, 93 — 4007 Porto Codex — Portugal
E-mail: aaraujo@picasso.inescn.pt, vpera@fe.up.pt
*UFRJ — Universidade Federal do Rio de Janeiro

obtained by a 512-point FFT. Using a discrete-cosine
ABSTRACT transform, 12 mel-frequency cepstral coefficients are

) o) - computed from these filterbank log-energies and then
For a real-time application of an automatic speech reétogn g,pmitted to a sine-liftering wilow [4]. After the cepstrum

system, hardware acceleration can be the key to reduce [igan gybtraction, these coefficients plus the normalized

execution time. Vector quantization is an important task that@hergy term and their first derivatives form each 26-D vector.
recognizer based on discrete hidden Markov models must

perform. Due to the amount of floating point operations
executed, the vector quantizer is an excellent candidate to bet

X . Inpu feature scalars recognized
gccelerated_ by custo_rmzed hardware. The desgg,eech FEATURE | vectors | VECTOR | ctream ciring
implementation and obtained results of a hardware solutiom—>/ DECODER [——>

QUANTIZER

based on field programmable gate array devices are presented. [\NALYSIS

1. INTRODUCTION

The usage of Automatic Speech Redtign (ASR) in real-
time applications demand increasingly faster processing. In

particular, the most computationally |n_ten3|ve .alg.orlthms nee ftFr the quantization (section 2.2), the decoding is carried out
to be accelerated as much as possible. This is the case 0

Vector Quantization (VQ), a time consuming task in ASFPy the one-stagealgorithm extended with devel building

applications based on discrete hidden Markov modegocedure[S] to account for a previously known string

(DHMMs) [1]. One way of achieving this acceleration is byength. For each digit, _modeled_ b_y one DHMM with 5-sta.te
. L ; : - akis topology, duration statistics assuming a gaussian
using optimized custom computing machines in terms of da{3

formats and arithmetic operators needed. This approach chétrlbutlon are used.

used in the Vector Quantization Processor (VQP) based @®r training, each model was first seeded running 4 iterations
Field Programmable Gate Arrays (FPGAs) we developed. of the Baum-Welsh algorithmi1] over 100 samples from the

T| database 6]. Then, an embedded 4 iterations of the Baum-

Next section describes the ASR application implement - - :
emphasizing the VQ step. Section 3 presents the architecteq%/eEBh algorithm was performed over 600 5-digits strings.

of the VQP and describes its implementation in a boarpessjﬁegogﬁginz(}/ogi ?{222;:@””93 from the same database
equipped with XILINX FPGAs. Obtained results are presenteqe <70 dig y:

and discussed in section 4. Finally, section 5 shows sonfge ASR was implemented in C language and the results that
conclusions about the work presented and remarks on futuge will later present were obtainednning it on a Pentium

Figure 1: A block diagram of the speech recognizer.

improvements that can be made. MMX PC at 266 MHz.
2. THE AUTOMATIC SPEECH 2.2 Vector Quantization
RECOGNIZER

In the ASR application the VQ operation deserved our
particular attention. It transforms each feature vedtonto a
scalari* using a codebook with dimension N=256 previously
The recognizer can be viewed as performing a sequence cgiculted by the LBG clustering algorithril]. For each
operations according to the block diagram of figure 1. SpeeMgctor V this module outputs the indeiX of the closest

is first submitted to anti-aliasing filtering, sampled1a25 ~codevectoC’. As a distance measure on the D=26 dimension
Hz and pre-emphasized with a first-order filter of the fornfPace the Euclidean norm was used.

(1-0.97%%). This signal is segmented into 23 ms Hamming

2.1 General Description

a a
windowed frames with an overlap of 14 ms between . . E|Dg (i)DZS
consecutive frames. For each frame, a set of 22 mel-scaled =arg min];gj-cj g
triangular bandpasslters is applied to the short-time power Isis N{ H

3. DESIGN AND IMPLEMENTATION OF The complete algorithms for floating point operators that were
THE VECTOR QUANTIZER implemented are well known and can be find in [8,9,10]. The

adder/subtracter units are more complex to implement than the
. multiplier [9], contrasting with what happens with the
3.1 Introduction corresponding integer arithmetic units. As a consequence of

The time spent with the VQ can be decreased with a dedicaté¥ the implementation area is higher and the speed of the
hardware implementation. THoat type used in the ASR C Circuit is lower.

source code is the shortest available format for real numbers,
presenting an excess of bits for the required precision of datRe x~ operator limits the clock frequency of the floating
values. Using a reduced format for floating point valueOint unit. By this reason several optimizations were

allows an acceleration of the algorithms that implement tH8troduced. It was implemented by a multiplier that uses an
floating point operators. optimized integer square function to perform the square of

. . _ operand’s significand [6]. The critical path occurs in the carry
VQP was developed to implement the VQ operation workingropagation chain of this operator. Another optimization was
as an auxiliary processor of a host computer where the ASftroduced by using théast carry logic[7] feature available

2

application runs. for XILINX 4000E FPGA family. Figure 4 presents an extract
. of the square operator schematic mapped into the FPGA
3.2 Architecture resources, showing the carry chain (dotted lines) with

Figure 2 shows the designed architecture. It closely maps (%ire‘,\dlcated input/output (CIN, COUT) ports.

hardware the VQ algorithm: initially, the host stores the

codebook into a RAM to be used by the VQP and, for eac ———F .] —
feature vector, the squared Euclidean distance to ea D ¢ R L
codevector is computed and the index of the closest one | =By i | EEAE 1 sme meeeee
returned to the host. ALt R 1 -ere S e
e T T -
[l tes Fuap | e
N rren :
RAM N e iy : ‘
AddrGen e e N [gy

853 7 SR B cr | os3 . oass P P

b
a0
g g
@z
=]
w2
w2
b
o}
=)
&
»
=
a
| |
(T
I-l

Figure 2: VQP architecture. Figure 4: FPGA mapping usintast carry logic

The main blocks of QP are described below. Figure 5 shows the customized 16-bit wide floating point data
format consisting on 9 bits for significand field, 6 bits for the
Floating point core. This is the largest module of VQP, whereexponent and the remaining bit for the signal. With this format
floating point computations are performed. It appears in figunhe range of representable real numbers is from
2 with the name of. SSAC (Subtract-Square and ACcumgIate)Lg_313x 107940 +8582 x10° |
As a measure of distance the square of the Euclidean distance
is enough, requiring a subtracter, an adder and a square
function. Figure 3 shows the computation chain with registers
to permit a pipeline operation with a three clock cycle latency. bys| byg ... bg|bg by

L 1L |
S e f

iZ (Xj'Yj)z Figure 5: Floating point format.
0

Memory organization. The RAM block that we see in figure

2 has a size of 13 Kbytes and is used to store de codebook. It
is written at system start-up. Due to intensive access of each
feature vector during the squared distance computation, it is
loaded on a cache memory implemented in the FPGA. This is

Figure 3: Floating point unit.

possible by using the XILINX 4000E internal RAM feature [7]processing applications [11,12]. In figure 6 we can see the
using the LogiBLOX module generator of XILINX M1 tools. organization of RVC. It is composed of a PC expansion board
This cache consists of two independent RAMs ofvith five XILINX FPGAs, two 4010E-4 and three 4013E-4
26 x 16 = 416 bits. While one of these RAMs holds the vectol{7], and is equipped with 1 Mbyte of fast RAM intended to
under processing, the other one is loaded with the next vectarork as vector memories providing a fast access for
Therefore, when the processing of the current vector finishesymputation units running in the FPGAs.

the roles of the two RAMSs are inverted and the VQP doesn’t . . .
need to wait for a new incoming vector to initiate a new N system is configured by a program running in the host
computation. computer, that downloads the configuration bit-stream for

each FPGA, whenever hardware reconfiguration is needed.
Input/Output. For each feature vector, VQP returns an indeAlthough equipped with the referred FPGAs, the board is
that indicates the closest codevector. The control unit sets tbempatible with any FPGA of the XILINX 4000E family.

initial index to the first entry in the colddeok and updates it . .
whenever a closest codevector is found. The host compufé"i’rt't'onmg on RVC. The RVC available resources allow

receives the computed indexes needed to the decoding té\gQ,VQP ips?ances to operate .in parallel. Figure 6 illustrates
that is performed by the last phase of the speech riimogn the instantiation of VQP blocks |n.RVC FPGAS: Whlle X1 and
application. X3 hold one VQP, the other VQP instance is distributed by X2

and X4. In the top of the hierarchy, X0 generates the top level
3.3 Implementation control for the whole system and interfaces with the host bus.

An ISA interface was used, and in spite of its low transfer data
The implementation of VQP was done using reconfigurableate, it does not introduces any time constraint on data
logic circuits of type FPGA. They offer a short design cycléransfers because the time spent with computation is greater
time and its reconfigurability feature can be explored to adaghan the one wasted with data flow. To give an idea of FPGA
the existing hardware to different data formats and to oth@ccupation, X3 and also X4 are about 80% occupied, with the
dimensions of feature vectors. arithmetic operators, corresponding to approximately three

quarters of the total area.

Task scheduling.Figure 7 helps to understand how the VQP
units work in parallel, showing the main data flow that occurs
in FPGAs X0, X3 and X4.

\ _______

LI
n ' ‘l ¥
xit Ll 3T x5

24

address N XC40xxE o | XC40xxE
X0 ~7 " PGI91/223 |21 2 x 128Kx8bit| PG191/223

32 32 32
CRbus decoder

1 2 341 2 5 63 4 785 i-4 i-3 i i+1i-21i-1

data

[

4x
1Mx8bits |3
26

s

XC40xxE 11
PG191/223 |, .,

) X2 21 2x128Kx8bit| g X4

24 8
XCA0xxE XC40xxE

PG191/223. | 2 2 x 128Kx8bit| PG191/223
’ /
. T / 32 \ T T
22 7 1y

32

o

[_expansion 1 [CRbus [expansion0]

address decoding _ > .
X0 configuration Load time 4<1<300
B
. Calculate Z (XJ 'Yj)z
i=o
. Return Index(¥)

Figure 7: Sequencing the main operations in the FPGAs.

The influence of cache usage (see section 3.2 about memory
organization) can be observed in this temporal sequence.
While a vector); is loaded into X3, the vector;_, is being

processed, and at the end of this, the processingstarts in

The RVC board. For VQP's implementation we used RVCparallel with the return of th&;_, computed index.
(Reconfigurable Vector Co-processor), a general purpose
reconfigurable system, essentially developed for vector

Figure 6: The RVC board supporting two instances of VQP.

4. RESULTS performance by using pipelining techniques that will improve
the data throughput.
The experiments we used to compare both software and

hardware solutions consist of a set of 300 feature vectors, 6. REFERENCES
extracted from a speech signal corresponding to a string of
five continuously spoken digits. Each one of these vectors
consists of 26 floating point numbers. The time spent to
process each vector (compute the squared distance to each
codevector and generate the index of the closest one) is 2. K.-F. Lee, Automatic Speech Recdgm: The

1. J. Deller and J. Proakjs, Discrete-Time Processing of
Speech Signals. Macmillan Publishing Company,
1993.

approximately 256 x (26 +4)x143ns=11ms. The term 4 is Development of the SPHINX System. Kluwer
due to the three pipeline stages included in the SSAC unit and ~ Academic Publishers, 1989.

digit recognition,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and
Signal Processing, March 1984.

An important conclusion that we can take from the temporal
diagram shown in figure 6 is that the initial loads}gf and

17, and the final result retrieved gy, , are operations that

consume an insignificant time when compared with all the
other operations. So, we can ignore this time to deduce the
total time (330 ms) needed to process the set of 300 feature

vectors. 5. L. Rabiner and B.-H. Juang, Fundamentals of Speech
Recognition. Prentice Hall, 1993.

4. P. Loizou and A. Spanias, “High-performance alphabet
recognition,” IEEE Transactions on Speech and Audio
Processing, vol. 4, pp. 430-445, November 1996.

Since the implementation described uses two VQP units
working in parallel the total time to process this entire setis g A Eshraghi, T. S. Fiez, K. D. Winters, and T. R.

115 ms. In each clock cycle of a VQP, three operations Ficher, “Design of a new squaring function for the
(—,x2,+) are performed, so a total of 42 MFLOPS is achieved Viterbi algorithm,” IEEE Journal of Solid-State
by the entire system. Circuits, vol. 29, pp. 1102-1107, September 1994.
7. Xilinx, The Programmable Logic Data Book, 1996.
Module Time (s) Reduction (% 8. D. Goldberg, What_ every gomput_er scu_enalst should
know about floating point arithmetic,” ACM
SW HW Computing Surveys, vol. 23, March 1991.
VQ 2510 0.115 95 9. N. Shirazi, A. walters, and P. Athanas, “Quantitative
analysis of floating point arithmetic on FPGA based
ASR 7.240 4.885 33 custom computing machines,” in IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 155-162,
Table 1: Improvements on the execution time of VQ and IEEE Computer Society Press, April 1995.

ASR.
10. A. R. Omondi, Computer Arithmetic Systems -

Table 1 shows the execution time results for software and Algorithms, Architecture and Implementations.

hardware implementations of the VQ module. It also shows Prentice Hall, 1994.
the impact of these results on the overall ASR system, where
the VQ effort is approximately one third. 11. J. C. Alves, A. Puga, L. Corte-Real, and J. S. Matos,
“FPGA implementation of a vector processor for the
5. CONCLUSION estimation of higher-order moments,” in Proceedings

of the Xll Design of Circuits and Integrated Systems
A hardware solution was presented to accelerate execution Conference, pp. 759-763, November 1997.

time of an ASR application. An implementation of the

architecture was performed on an FPGA based platform. The 12. J. C. Alves and J. S. Matos, “RVC - a reconfigurable
resources available on this system allow an implementation coprocessor for vector processing applications,” in
with two computation cores working in parallel. A very Proceedings of the"6Annual IEEE Symposium on
significant reduction of the execution time was achieved, FPGA Custom Computing Machines, April 1998.
allowing the VQ module to be 22 times faster than the

software solution. Features like modularity and schigtof

the architecture of VQP were emphasized, since they can be

explored to obtain a VQ with several VQPs working

concurrently to increase the system performance.

The main system clock limitation is due to the floating point
arithmetic operators. Future work is planned to increase the

