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potential, based on the premise that additional cues for
ABSTRACT phonetic discrimination may exist in the spectral correlates of
) ) ) ~a particular sub-band, but not in another. The recombination
This paper explores possible strategies for the recombinatigiights should ideally reflect the contribution of each sub-
of independent multi-resolution sub-band based recognisefgyng for discrimination of a particular class. In keeping with
The multi-resolution approach is based on the premise thafis principle, weights are derived via discriminative training
additional cues for phonetic discrimination may exist in th%sing the ‘Minimum Classification Error’ (MCE) criterion on
spectral correlates of a particular sub-band, but not in anothgg_jikelihood scores. Using the MCE criterion, weights for
Weights are derived via discriminative training using thne correct and competing classes are adjusted in opposite

‘Minimum - Classification Error’ (MCE) criterion on log- gjrections, thus conveying the sense of enforcing separation of
likelihood scores. Using this criterion the weights for correctonfusable classes

and competing classes are adjusted in opposite directions, thus

conveying the sense of enforcing separation of confusabldis principle of deriving recombination weightings can be
classes. Discriminative re-combination is shown to providextended to derive state-based weights for each multi-
significant increases for both phone classification antesolution sub-band hidden markov model. This is to
continuous recogtion tasks on the TIMIT database. acknowledge that the spectral information across sub-bands
Weighted recombination of independent multi-resolution subwill be different for the states of a multi-resolution HMM .

band models is also shown to provide

fobUSINe$S, tending the multi-resolution cepstral decomposition from
improvements in broadband noise. y e apace 10 the model Sace also Gives the 1 i

the feature space to the model space also gives the possibility
of improving robustness in noisy catidns by exploiting

1. INTRODUCTION variations of sub-band SNR to weight the reliability or
In recent years there have been a number of papers on seppfidence of the partial information from each recogniser.
band based speech recitigm [3, 4], inspired by Allen’s We present some results which demonstrate this advantage in
paper reviewing the earlier work of Fletcher [1]. The centraVhite noise.
conclusion of this work is the proptien that the human
auditory system relies on the recognition of independent 2. MULTI-RESOLUTION SUBBAND
spectral-temporal features. The multi-resolution approach FEATURES
extends the purely sub-band approach by supplementing,
rather than substitutingoaventional full-band MFCC’s with LetE =[E;, E,,...,E;] be a sequence of log mel-filter bank
more detailed sub-band cepstral features. Experimentatienergy vectors. Cepstral features are derived from a linear
with multi-resolution cepstral features based on concatenatigrnsformation of
of cepstral vectors from a number of sub-bands, outperforms
conventional MFCC features for the continuous phoneme X, =AE, (1)
recognition task on the TIMIT database [2].

As an extension to this earlier work, a new approacA is conventionally the DCT, but it can be a general
presented and evaluated in this paper is to combine the lafiscriminative feature transform [5]. Multi-resolution feature

likelihood scores of independent sub-band acoustic models. #&sctors are a set of feature transformations such as

a result of such an approach a number of issues need to be

addressed, including possible strategies for the recombinatiort =[AE: (A1Er AsEd.( AiEa AsE2 AxEas AE )T (2)

or merging of the individual sub-band/model recogniser

scores. While non-linear recombination has been explored VigE,, yields the cepstral features over the whole bandwidth,
the use of a ‘Multi Layer Perceptron’ (MLP) [3], the approacl{A E,, ,A,E,,) yield cepstral features over, the lower half and
adopted here is the principle of linearly weighting confidencehe upper half subbands, andA E., A,E.. A.E.. A.E.)

for each sub-band recogniser according to its discriminativgeld the features over four subband quadrants and so on.



3. MODEL RECOMBINATION w1 = o = IT(X)

8
STRATEGIES " ®

3.1 Discriminative Class Based Weightings where w" is the parameter value after thé& iteration,

Consider the multi-resolutiorubband cepstral feature vectors al'(X)/w” is the gradient of the loss function amdis a

X r=1,..,R; b=1,..B where r identifies the resolution gmaji| positive learning constant. For the sake of brevity the
level and b the sub-band index within that resolution (for r=},eight update equations are quoted without direct derivation of
indicating the full band, B1). If we associate independente gradient function as follows, f belonging to class k and
models Mgrb) for each band b within resolution r, then being the most confusable class.

combined log likelihood for class j can be given as
wof ML = offPRN — g(Ty (X)IM(X) = 1) BEP(X () (9a)

R B,
logp(X|M;) =Y > ™ logpX ™ [M{™)  (3)
=g g P = 01+ £(T OO 09 D) BYPX ) (o)

(rb)

o . » 3.2 Discriminative State Based Weightings
reflect the discriminative potential or confidence of each sub-

band for a particular class. Fully independent mod\dlgb) The issue of at which segmental level to recombine log-
likelihood scores is one which has as yet proved inconclusive

will have separate state transition probability matricezis]. The recombination criterion at a model level outlined

The multi-resolution sub-band weight®: " should ideally

Howevg_r_ for our |n|t|_al experlments the state transitio bove is advantageous for phoneme classification, but does
probabilities are effectively tied for the sub-band models

each phoneme. In keeping with this principle we propose
grb) using a
minimum classification error (MCE) criterion eg. [5]. Let

ot address the issues raised with regards to continuous speech

P%cognition.
perform discriminative training of the weight®
The MCE criterion outlinedkmove can be extended to derive

state based weightings for each sub-band model, which in turn
can be applied as state based stream weights, thus allowing the
Bgrb) (X ™) = |og p(x(fb)||v|§rb)) (4) discriminative multi-resolution weights to be used within the
standard HMM framework for continuous speech redagn
. . . Given the sequence of multi-resolution feature vectors

describe the partial recognition score for a sub-band vector

X ™ given a sub-band model, we define the log-likelihood X0 =[x (P (B x P (10)

score of the full parameter vector belonging to class j as

the optimal state sequence for a sub-band model j is defined as

R B,
_ (rb) x(rb) /\, (rb)
(X) = w "B (X 5
gj( ) ;bzl j i ( ) 6)] G)El’b) - [91’92,93,“.’91_] (11)

Let a misclassification measule(X) for a training vector

such thatB, represents the state associated with feature vector
belonging to class k be given by

x§fb> . Without taking into account the state-to-state transition

dp (X) ==-g, (X) + m;axgj x) probabilities, the partial classification score 6™ | given a
j

= -9, (X)+ g, (X) ) sub-band model j and state segmenta@)ﬁﬁb) is then
n

wheren represents the model with the nearest score ie. the () /o (rb) (D) _ Ll (rb) (rb) ~, (tb)
most confusable class. A loss function can be defined [5] as a Bj (X( )'@j )= ij,e‘ |OgBj,e‘ Xy @2
sigmoidal function ofd, (X) t=1

1 where w{™ represents the linear weight associated with class
Me(X) = T a0 (7 o
1+e j for sub-band b (of resolution r) and state iTIifJ is defined

o o o to represent the set of time indices such that the state

The loss function is minimised for each training vector by - (rb) .

: A . : ssociation of the feature vectef; ~ belongs to state i, and
adaptively adjusting the sub-band model weights, according & i )

where N represent the number of states in the model k, i.e.



T ={6, =i} 2<isN-1 1<t<T (13) seen to yield no further advantage. For the purpose of these
b t experiments therefore, three multi-resolution bands are used -
a full band supplemented with two sub-bands.
The weight update equations of (9a) and (9b) are refined to

4.1 State-Independent Weighting of Multi-

WP =" ey [N 1) Ylog BIY(X(™) (142) Resolution Sub-bands

tom,
Table (1) gives results for phoneme classification using
independent multi-resolution sub-band models, along with the
sub-band boundaries implemented. The fourth row indicates
the linear recombination of all three multi-resolution bands.
The rightmost column of the table shows the results of
3.3. SNR Weighted Recombination discriminatively weighting each sub-band class with twelve
epochs of MCE criterion based via the strategy outlined in
An advantage of splitting the spectral information into subSection 3.1The column headed ‘Cepstral Analysis’ indicates
bands is that variations in sub-band SNR may be exploited five number of mel-filtered cepstral coefficients extracted from
improved recognition in noisy conditions. Thus by weightinggach band before delta and acceleration coefficients are
the confidence in each multi-resolution sub-band streaappended. One point of interest is that the classification results
according to its SNR, the influence of low SNR informationmprove even for sub-band only discrimination, showing the
can be reduced with a corresponding shift to reliance on partjatential for between band discrimination. Multi-resolution
recognition from higher SNR regions of the spectrum. Thusub-band recombination is shown to yield an increase when
equation (3) can be refined to each band is given equal weightings, and when combination is
based upon discriminatively trained weights, the final
improvement in classification score is significantly above the
original full-band MFCC classification score.

O R ([ Jl)szlog BB (x{™)) (14b)

R B
logp(X|M)) =zmzlw}rb’ (SNR™) logp(x ™ M (™) (15)
r=1b=

where(ogrb) (SNRErb)) specifies the sub-band weighting to be| Bandwidth | Cepstral Equal MCE Derived
kHz Analysis | Weightings Weightings
a function of the local SNR (for band b in resolution level r) fo (kHz) Y ghing ghing
model j We initially have experimented with Weiner -type 0-7.9 (13) 65.62 67.6
weightings of the following form 0-2 @) 56.72 8.4
2-7.9 7) 44.05 45.3
“ Sﬁ“b) 0-7.9, 0-2, 2-7.9 (13)+(7.}) 67.04 70.0
r —
I S(rb) + N (16) Table (1) 'TIMIT State-Independent Classification Results'.
]
Bandwidth (kHz) Cepstral Recognition (%)
S{™) defines the signal power in sub-band b of resolution r for Analysis
]
the phoneme class j. This value is obtained experimentally Hy 0-7.9 (13) 68.8
averaging the energy within each sub-band over all occurrences 0-2,2-7.9 (7.7) 69.9
0-7.9,0-2,2-7.9 (13)+(7,7) 70.6

of each particular phoneme across the TIMIT databhls(ét?)
specifies the noise energy within a sub-band. As the spectral Table (2) Concatenated Cepstra Recognition Results
characteristics within each state of a phonetic HMM are
different a refinement to the weighting functions would be to 4.2 State Dependent Weighting of Multi-
make them, not only model dependent, but also state Resolution Sub-bands
dependent.
Table (2) shows the results for models trained using
4. EVALUATIONS concatenated multi-resolution cepstral feature vectors, with
Table (3) giving results when weighting independent multi-
The performance of the multi-resolution cepstral feature ségsolution sub-band model states for continuous phoneme
was tested on the TIMIT speech database using 39 contesg@cognition. State based weights were trained on classified
independent 12 mixture HMM models for each multi-data as outlined in Section 3.2 using twelve epochs of
resolution sub-band. The full TIMIT training and test setgliscriminative training. As demonstrated by Table (2), there is
were used throughout, with the exception that classifiesome improvement in performance using sub-band cepstral
phonemes of less than three frames were excluded from t@atures alone, compared to the full bandwidth cepstra, with
experiments. Previous experimentation [2] showed that whifgrther improvement in recognition performance when the
supplementing the full band cepstra with either 2 or 4 sutsaulti-resolution features sets are employed.
bands gave improved results, use of both resolution levels was



of state-based weights is still to be exploredngl with the

Bandwidth (kHz) Cepstral Recognition (%) possibility of time-varying weights for non-stationary noise.
Analysis
0-7.9,0-2,2-7.9 (13)+(7,7) 70.21 5. CONCLUSIONS
0-7.9%,0-2,2-7.9 (13)+(7.7) 72.9 Multi-resolution sub-band cepstral features strive to exploit
0-7.9%,0-2*2-7.9 (13)+(7.7) 73.0 discriminative cues in localised regions of the spectral domain
0-7.9%,0-2*,2-7.9* (13)+(7.7) 72.4 by combining HMM models trained on full band-width

cepstral features with HMM models trained on cepstral
features derived from several levels of sub-band
decomposition. Linear weighted recombination of these

Table (3) Weighted Independent Stream Recognition Result

Cepstral | Concatenated| Equally Wiener- independent classifiers is shown to outperform conventional
Analysis Features Weighted | Weighted MFCCs for phoneme classification on the TIMIT database.
Streams Streams The recombination weights should ideally reflect the
(13) 37.1 - - contribution of each sub-band for discrimination/redtign
(7,7 35.9 34.7 40.0 of a particular class. In keeping with this principle, weights
(13)+(7,7) 37.7 36.6 44.4 are derived via discriminative training using the ‘Minimum
(5,5,4,2) 34.6 335 36.5 Classification Error’ (MCE) criterion on log-likelihood scores
(13)+(5,5,4,2 36.0 36.0 44.2 at both a class and state level. Discriminatively weighted
recombination yields a further improvement for TIMIT
Table (4) Recognition Results in Noise phoneme classification, while state-dependent stream

weighting offers a similar improvement for continuous

phoneme recogtion. By exploiting the sub-band variations in
The first result of Table(3) is produced when all the modekignal to noise ratio for linearly weighted recombination of the
dependent state weights are set equal to unity. For thg likelihood probaliities improved phoneme recogtion
remaining results, an asterix beside the sub-band boundwformance in broadband noise is also obtained. This is an
indicates that discriminatively trained stream weights werddvantage over a purely sub-band approach using non linear
applied to that multi-resolution sub-band whilst the other Suggcombmatlon which is robust only to narrow band noise.
bands were left unweighted. One point of interest is that whiRecent papers [5] have shown that using discriminative
weighting one or two bands offers an improvement imethods such as the MCE criterion to derive optimal linear
performance, weighting all three bands offers no furthdransforms is superior in performance to using a global fixed
improvement, attributable to the fact that the sub-band weighigear transform such as the DCT. This, coupled with the
are trained independently of each other and may be at tim@ension of the multi-resolution model from the spectral
conflicting. Nonetheless the state-based model weightiffPmain into both the spectral and temporal domains,
achieves a further significant performance improvemerﬂeglnnlng with the_dlscnmlnatlv_ely Welghted inclusion o_f
beyond that produced by using straightforward concatenatgggmemal m_odel_s into the multi-resolution framework, will

. . provide the direction of research for the near future.

multi-resolution feature vectors over full-band MFCCs.
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