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ABSTRACT 2.2. Transcription

This contribution presents part of the work initiated at the CTExperts then transcribed the material. A user interface was
for the development of speech leclogy to assist non-native developed for this purpose, thus providing experts with
speakers learn Swedish. This study focuses mainly on thkassical and specific annotation tools (automatic phonetic
automatic location of mispronunciations at a phonetic levedlignment, pitch extractor, signal display, common errors, etc.).
We first describe the database we created for this work and th&s pointed out by [2], very little is known about the human
report on the reliability of several phonetic scores tacores used as references in previous studies. Therefore, we
automatically locate segmental problems in student utterancesasked the experts to be aware of the different parameters that
could influence their ratings. For instance, each expert was
1. INTRODUCTION asked to distinguish between prosodic and phonetic quality
] during the entire transcription process. Furthermore, the expert
Over the last decade, advancements in speebhdtegy have mogified the standard phonetic transcription providedefash
opened up new possibilities for interactive languag®Hing item py a text-to-phoneme processor [4] to reflect the phonetic
systems [1,7,10,11]. And more recently, a growing number feyiation. Each phonetic deviation was rated on a scale of 1 to 5
studies have addressed the problem of automatically rating NQRom “horrible” to “not really deviant”). More information on

native speakers by providing measurements that can Bg transcription process is given in [6]. For the time being,
correlated with human Judgmgnt [3,5]. These studles. show th@,t“y one expert has transcribed enough material to be
rating a speaker on a 5-point scale can be achieved WitBpsidered in this study. This expert has a strong background in
performance inversely proportional to the size of theesp-  pnonetic science and is involved in foreign language learning.
unit rated. In other words, speechhralogy is mature enough ghe has transcribed 8 text-sessions (about 800 phoreaties

to grade a speaker globally and seems capable of gradiggq g word-sessions (close to 400 phonesaeh).
individual sentences. Despite an interesting implementation [8],

it is not yet clear whether speechheology is suited to rate 2 2. Expert feedback

individual words. Furthermore, few studies have reported

results on grading individual phonemes [5,6,12,13]. Althouglt appears that the task of transcribing is much more complex
this task is quite challenging, we do believe that a systeend time-consuming than was initially expected. To ensure
capable of grading pronunciation at a phoneme level is @nsistent ratings throughout her work, the expert felt that she
prerequisite for a useful stand-alone pronunciation traineoften needed to go over several times item which had already
Therefore we address in the following the automatic rating dfeen dealt with and even review work she done in previous

individual phonemes using epch reognizer outputs. sessions. The expert also pointed out that rating sentences is
easier than rating isolated words and expressed difficulty in
2. DATABASE giving an overall rating to each speaker session. As part of our
future research, we will check the consistency within and
2.1. Speech Material between the different experts' judgments.

Twenty-one non-native speakers of Swedish, including 8 4. Error analysis

females, participated in this research. All hold an engineering

degree from their respective universities. Each speaker whBe greater the segmental error, the easier it is to detect [6].
asked to read isolated words as well as a full text. The readihignce, we will discuss the distribution of vocalic errors
material, as chosen by teachers of Swedish, included 1) alyserved in our corpus regardless of the mother-tongue of the
Swedish vowels (long and short) at least once; 2) all consonasgeaker. We must first point out that a specific error doesn't
in all initial, medial and final position. The text (17 sentencepecessarily receive the same rating. For instance, the vajvel [
with an average of 17 syllables each) was selected to proviggonounced asa], was graded three times as 1, twice as 2 and
easy reading for low-skilled students of Swedish. Each speak®tce as 3. This is due to the fact that the expert's judgement
pronounced 110 isolated words (59 mono-, 50 bi-, and 1 tivas influenced by the context in which the error occurred
syllabic words), with 20 of them being uttered twice. First, thésyllable, function/grammatical words, etc.). The influence of
students were asked to read the words and the text silently dhe context, and what is actually understood by context, is still
then given the opportunity to ask questions about the possilsigen for debate and cannot be investigated yet due to lack of
pronunciation problems they might encounter. Their utterancé@ta. However, it is a rather important issue given that the task
were recorded on analog tape during a classroom test. consists in matching automatic scoring with the evaluations of



experts. The distribution of vocalic errors is reported in figurexperts' ratings are reported for each speaker in figure 2.
1. Each error is indexed as a single value (called sp-inde®pntrary to our expectations, the recognition rates observed
representing its position in the classical 3-dimensional featuredth dynamics sets of models are always lower (a loss of
vowel production sace: the degree of opening (close, closeaccuracy exceeding 15%). We observe that the word
mid, open-mid and open), the front/back dimension (frontecognition rate is poorest for the two lowest ranking speakers,
central and back) and the lip-rounding dimension (rounded and that the first-ranked speaker is the one that is best
not). Each deviation of one unit in any of these threeecognized.

dimensions scores a 1 and the sp-index of an error is computed
as the sum of the deviations for each dimension. For instance, *°
the error §]/[o] is indexed as 3 since these two vowels differ by =
two units in the front/back dimension (front vs. back) and by .,
one unit in the opening dimension (open vs. open-mid).
Looking at the error distribution, we observe that most of the : : : : : :
errors in our corpus deviate in only one of the three feature- ™ ; R co A Sl i

recognition rate (word level)
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Figure 2: Word recognition rates measured for six speakers as a
function of number of gaussians per state. The number in
parentheses reports the speaker rate given by an expert.

Flgure 1: Distribution of vocalic errors as a function of sp-3.2- Measurements
index (see text explanations).
Further to previous work, we compared two types of phonetic
scores, log-likelihood scores and log-posterior probability
3. EXPERIMENTS scores, which are both computed in an HMM paradigm.

In this work, we investigate the usefulness of acoustic scork89-Likelihood scores
provided by a speech mgnizer to identify whether vowels are

deviant or not. For that purpose, we used several sets of Contfﬁ%(elihood score is defined dswherep(y|q) is the probability

independent phoneme models trained on a native cleachkp : . . .
. that the observation vector at tin is generated via the
corpus of 2100 sentences. Two different types of feature vectaqr; @) is g

were evaluated: standard static Mel frequency cepstru?rlﬁonetIC moded:

coefficients (MFCC) and dynamic mean cepstrum subtractiopherebj: X stands for the density probability function (typically
Mel frequency cepstrum coefficients. The latter should perform mixture of gaussians) associated tojthstate of the modej
better when there is background noise or when there is(@&hich totalizesn, states).] stands for an operator (maximum

FO{ eachphone segment (of d frames: [t t [), the log-

significant mismatch between the training and target data, to+d-1 n
which is the case with our non-native corpus (cleaesh vs. I ==0Y% log(p(y,/q)) and p(y,/q) = 0 b*y
cassette recorder). Due to practical issues, we have not yet d 1:210 v v ENUAA

investigated contextual models. However, when they used h bal s th ber of ficient
multiple mixture component monophones models, Young &' average). The symbalrepresents the number of coefficients

. : d to computd;;X for the observation y Practically, we
Witt [12] reported a higher degree of accuracy fitloneme use . . ¢ ) ’
quality acceptance/rejection. tested two values ‘of: 13 (only first mfcc coefficents) and 39

(first coefficients pludl andAA ones).

3.1. Global recognition rates Computing a frame by frame log-probability as described here

. . . . . .. provides output scores for eaphoneme, and this correlates
The basic assumption behind the phonetic scoring algorlthrﬁsOre or Iess to the Iog-probg:ility score directly computed
proposed in previous studies is that one should be able g]o

. ; . uring the forward viterbi path. The correlation coefficients
evaluate the quality of non-nativeeggh by acoustic scores .
) . . range from 0.5 to 0.9 depending on the speakers tested and the
computed by a speech ogmizer trained on native spch.

set of models used. One possible explanation is that in the
As a first crude test of this assumption, we ran a small-scdl@me-by-frame (FBF) computation mode, the order in which
isolated words recognition experiment (a loop of the 9different states are considered is not necessarily the order in
different words of the word-sessions described in section 2.Which they occur in time. Therefore we also endeavoured to
with only one possible pronunciation provided &ach word). compute log-likelihood scores by running a viterbi alignment
The recognition rates for the static sets of models as well as @ each segment. The liketiod probabilty at timeis obtained



inverting the viterbi path. In this paper, we will refer to thig[12] is less informative for corpora containing fewer deviant
mode of computation as VIT as opposed to the FBF algorithmphonemes (theSAis basically higher thaR).

We also investigated whether or not it was best to include the

transition probability in the score calculated by the viterbi patt3.4. Results of Individual Ratings

and found that, for this task at least, it didn't make a significant

difference. We tested 372 scoring machines which combined different
factors such as the number of coefficients of the inpaedcp
Log-posterior probability scores vector (13 or 39), the kind of set of models (static or dynamic,

fr_om 1 to 13 gaussians), the score used (log-likelihood or
osterior scores), etc. Using a native corpus, each scoring

least at the sentence level). This can be explained by the f?g?chlne was automatically assigned a set of threshold values

that non-discriminating criteria are still widely used during the each vowel ermintered. The distribution of F-rates
. 9 . y 9 "bserved for those scoring machines is reported in figure 3.
training process of an HMM paradigm. The log-posterio

Basicall istinguished:  th ith
probability score of a phone segments computed as the asically, two types can be distinguished: those wit

average (over time) of the frame based posterior probabilit Frformances around 0.15 and those rating around 0.4. The best
9 . P P Y Hachines obtain a performance above 0.5 which means, roughly
the phone gat timet. N stands for the number of phonetic

. . - speaking, that fifty percent of the vowels identified as deviant
models (namely 53 here) ait{qj) is the prior probability of were really deviant, and that around half of the deviant vowels
p(y,/9)P(qg) were identified. This is obviously not good enough for a

log ————— ' realistic application despite the fact that this approach
d & Y . p(y./a)P())
j=1 oA i outperforms a random scorer. Several reasonsaceount for
the phone class; : that. First, as already discussed, most errors are due to slight
deviations, mainly mismatches between the phonetic quality of
We computed this score assuming all phones equally likely.  an accented vowel and itenaccented eunterpart (e.g.of]/[5]
. substitution). In a previous study [6], we ran an experiment on
3.3. Evaluation an artificial database. Modifications such #§4] substitutions
were made to the phonetic reference of 30% of the non-deviant

Due fo time constraints, the expert transcription is not tlm\(/aowels. Under such conditions, the scoring algorithms behaved

aligned. Thus, in order to evaluate the efficiency of each score expected and vowels could indeed be labelled as deviant or

we aligned the expecteq phonetlc string (which is time a.lhgne%it. We obtained an F-rate of more than 0.94 on word-sessions
with the expert transcription. A student can make differen

. . . » . - With posterior scores computed with a set of 2-gaussian static
mistakes with which a system has to cope: insertions, deletions : L
N ! . . models. Another reason that can explain the limit of these
and substitutions. We defined a dynamic programming scheme . . . . . . ;
. : . .~ scoring machines is the difference in quality between the native
suitable for the present task (allowing for instance 2-1 mappings .
. . . o peech database and tian-native one. As part of our future
which are common in non-native utterances). We limited this . . . . -
. wpork, we plan to investigate the impact of noise reduction
study to the most common and easiest errors to handle, name .
o . téchniques on the results.
substitutions (1-1 mappings). Among these errors, we focusse
on vowel substitutions despite believing, given our corpus, that
spotting consonant errors could be an easier task. As a matte * [ : : : : : PR _
of fact, the spelling of some Swedish words often causes ° oy IR
beginners to make significant consonantic errors. For instance * [~ 7
the letterk is pronouncedk] when it is followed in the same i :
syllable bye, i, y, aor 6, but is pronounced¢] either. In N
previous studies the reliability of a scoring algorithm was = %
measured by computing the correlation between its scores an 1 |-
the experts' ratings. As discussed in section 2.4, it appears that o
given phonetic deviation can be rated differently depending on
the context in which it occurs. This should affect the correlatiol__]
results slightly. An artefact which can influence the
interpretation of the results was also discussed in [6]. In thi
study therefore we evaluagach score on its ability to locate
deviant phonemes. The efficiency e&ch score is measured
according to the precisio? (= bad / (bad+GOOD-good)and
recall R = bad / BAD rates. For the sake of convenience, wi
will use the F-rate K = 2x (PR)/(P+R) where BAD and

GOOD (resp.bad andgood stand for the number of phonemes

Based on previous studies, it seems that HMM-based lo
likelihood scores are poor predictors of the phonetic quality (

1 to+d-1

p=

A e
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igure 3: Distribution of the number of scoring machines
gvestigated as a function of F-rate.

We will now discuss how the different factors influenced the
gerformances observed. Figure 4 shows as a function of the F-
rate, the ratio of systems that make use of a) the viterbi
algorithm (VIT), b) the static set of models (STATIC), c) the 39
co&ﬁicients (COEF39) and d) log-likelihood scores (PROB).
%e observe (figure 4a) that the worst systems (20% of the total
ones) represent around half of the systems which used log-
likelihood score and a third of the systems using static

(resp. by the system). Note that the score accubayréte of
phonemes well identified) and the falaeceptance rateFA:
rate of deviant phonemes that have baecepted) as used in



monophones. This corroborates what has been observed in oth@ve us material about their L2 students' pronunciation
studies: posterior scores are better predictors of phonetnaining. We would also like to thank Lucie Langlois for her
quality than log-likelihood scores. With less influence, staticseful comments.

models are worse predictors than dynamic ones maadguse

of the mismatch in quality between the training and the testing 5. REFERENCES
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