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Abstract
A person verification system based on voice and facial images has
been developed within CSIRO Telecommunications and Industrial
Physics, Australia, for use in low-to-medium security systems. It
provides a unique ID, which is non-intrusive, fast, and has no need
for memorising passwords. A stand-alone version of the voice ver-
ifier has an error rate of less than 8%, while the face verifier has
an error rate of less than 5%. By combining the two modules, an
error rate of less than 1% is achieved. This paper describes in de-
tail the method and some of the important practical issues in the
implementation of the voice verifier. It also addresses the issue
of decision making if the two sub-systems produce contradictory
results.

1 Introduction
Computer system security has been a major issue ever since the
invention of the computers. Traditionally, people have been re-
lied on passwords to prevent unauthorised entry into their systems
and so far the method has worked relatively well. However, with
more and more systems requiring passwords, it has become quite
inconvenient and difficult to remember many passwords. Some
biometrics based person verification systems, such as those based
on finger prints and retinal scans, have been developed to over-
come this problem and provide higher security. Because they are
intrusive and have the connotations of criminal attached to them,
people have been reluctant to use them as daily security measures.
In contrast, personal face image or voice based systems are non-
intrusive, easy to use and widely acceptable. They provide a nat-
ural form of accessing not only computer systems but also many
other electronic systems as well.

CSIRO Telecommunications and Industrial Physics, Aus-
tralia, has developed a fast and reliable face recognition system[1].
The system has an equal false-acceptance/false-rejection error rate
of less than 5%. As one of our efforts to enhance the system’s
verification performance, we chose a dual-modality approach by
adding a voice-based verifier to the system. This has made the
overall system much more robust to different lighting/sound con-
ditions or facial/vocal changes. Under typical office environment
where lighting is moderate and ambient noise level is relatively
high, an error rate of less than 1% can be achieved by the com-
bined system.

In this paper, we focus on the voice verifier and the problem of
how to make decisions when the two sub-systems are combined.
For interested readers, reference [1] provides detailed information
on our face verification system.

2 System Description
The voice verifier uses randomly prompted digits as voice pass-
word and a Hidden Markov Model (HMM) as the classifier. Com-
pared with a user-chosen password, there is no need to remember

the password because each time a user tries to log into the sys-
tem, s/he will be asked to speak a different randomly chosen digit
sequence. Randomising the digit sequence can also increase the
system security because it makes entries with recorded voice very
difficult. The system consists of 5 modules, and the diagram is
shown in Figure 1. The output of this system is a confidence mea-
sure about the user’s identity, and is combined with the output
from our face verifier to make the final decision.
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Figure 1. System diagram of the voice verifier

Not shown in the diagram is a silence removal module be-
fore the pre-processing. This module has been found to be critical
to the system performance in noisy environments. Noise and non-
speechsounds will be removed and each digit utterance segmented
into a fixed length sequence, which guarantees the same number
of symbols (indices into the vector quantisation codebook) for all
the digits. The reason for using a fixed-length block for each digit
is that we can linearly combine the classification scores without
the need for time alignment between digits.

2.1 Pre-processing

Input speech is sampled at 11.025kHz with 16-bit resolution,
the rate chosen for programming convenience on a MS-Windows
based PC. In fact, any other sampling rate between 8 and 16kHz
could be used simply because most of energy of human speech is
concentrated below 4kHz frequency range. Higher sampling rates
than 16kHz would only increase the system computational load
with only minor improvement of system performance. A band-
pass filter is used to limit the voice bandwidth to between 50 and
3400kHz. This band-pass filter also serves the purpose of remov-
ing non-speech sounds outside that frequency range.

The input speech is also pre-emphasised with a high-pass fil-
ter which has a transfer function of1 � 0:95z�1. This has the
effect of spectral flattening and increasing the signal to noise ra-
tio at high frequency range to better preserve the speaker’s voice
characteristics.



2.2 Feature Extraction
Speech is generally piecewise-stationary within a duration of
around 20 ms. For each block of 256 samples (23 ms), the input
speech samples are windowed with overlapping Hamming win-
dows, and some features are extracted. The commonly used ones
are the linear prediction coefficients (LPCs), LPC-derived cep-
stral coefficients and Mel-frequency cepstral coefficients (MFCC).
Other speaker-specific features such as pitch, speech intensity,
formant frequencies can also be used for verification. But due
to the difficulties of measuring these parameters, they are rarely
used. Therefore, by far the most prevalent features have been the
short-term spectrum-based ones. Research has shown that among
all the features for speech recognition, the MFCC gives the best
performance[2].

The MFCC is calculated as following:
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whereQ is the number of triangular filter banks,Stq the energy in
each logrithmic band,p the MFCC order andt the block index. A
total of 12 MFCCs are calculated for each block of 256 samples
of speech.

2.3 Vector Quantisation
Features extracted in such a way are normally continuous-valued,
and are represented as feature vectors. It is necessary to transform
these vectors into a set of orthogonal base vectors, in order to re-
duce the total number of vectors the classifier has to work with.
Vector quantisation (VQ) serves such a purpose. Without VQ, all
parameters within the classifier have to be approximated by us-
ing a mixture of continuous probability density functions (PDF)
instead of numbers, and parameter estimation in such a situation
becomes much more complex.

A codebook with 128 code vectors was designed using the
LBG algorithm[3]. Each vector is a block of 12 speech samples,
corresponding to the 12 MFCCs obtained in the feature extrac-
tion stage for each frame of data. Output from the quantiser is
the index to the codebook. This index is used as the observation
symbols (1-128) of the HMM classifier.

2.4 Hidden Markov Model based Classifier
There are a few methods that can be used as a classifier, but most
of them can be classified into two categories, namely the dynamic
time warping (DTW) based method and the hidden Markov model
(HMM) based method. The DTW is basically a template matching
method, in which some distances between two vectors with differ-
ent time scale are measured. Systems using HMM have shown
greater flexibility and generally perform better than DTW-based
ones. But for systems where computational power is limited, the
DTW approach may be preferred due to its simplicity.

In contrast to this template-matching method, the HMM ap-
proach uses statistics derived from speech feature vectors to score
the likelihood of a given input feature vector. Each person reg-
istered in the system has his/her own models trained during the
initial training sessions. Decision of either anacceptance or a re-
jection of the user will be made by comparing this likelihood with
a pre-set threshold stored in the database with the models. In our
system, we use only the 9 single digits (1-9) to form a password.
Each of the 9 digits is modelled as a separate HMM, as shown in
Figure 1. Because we know which digit is prompted (or spoken),
we can test the spoken digit using the model of that digit, with-
out having to go through all the models to find out which model
produces the maximal score.

For each digit, a 6-state left-right type HMM is built for each
person. Our test results have shown that even though the system
performance is not very sensitive to the number of states used in

the HMMs, a 6-state HMM performs slightly better than others[4].
A single state could be either a phoneme in a digit, or an obser-
vation interval of 10-15ms (Bakis model). For a discrete density
HMM, 512-1024 codewords or symbols are required to give satis-
factory performance.

For the training of the HMMs, batch training with multiple
sequences is used. We have found that 10 or more repetitions of
each digit is sufficient for a relatively good performance with the
6-state HMMs. We can reduce the number of digits required for
training by reducing the number of states used with minimal re-
duction in the performance.

When starting to build a model from scratch, initial values to
all the parameters have to be assigned. Since the re-estimation
procedure (the Expectation-Maximisation method) can only guar-
antee at its best a locally optimal solution (local minimum of the
PDFs), initial estimates of the HMM parameters are crucial for a
good model. Rabiner[4] has suggested a few ways of getting the
initial estimates. We have found, however, that using a simple ini-
tialisation procedure where all parameters are set to random values
works just as well for our purpose. All parameters, of course, have
to be guaranteed non-negative.

2.5 Start/End Point Detection
To correctly pick up a spoken digit, a good start/end point detec-
tion method is needed. Ideally, it should remove all the silence and
non-speech sounds from the input. Silence simply adds unneces-
sary computational load to the system and could also affect the
classification performance in the training stage, while non-speech
sounds bear no speaker’s voice information and will severely in-
crease the verification error rate.

One of the difficulties of the Barkis model is time alignment
of two utterances at different speaking speeds from one speaker.
Since each symbol (codebook index) corresponds to a speech
frame (in this case, 256 samples with overlapping of 128 samples),
variations in speaking speed will affect the number of frames,
hence the number of symbols within each word (digit). The score
produced by the classifier is a measure of the likelihood that the
model generates the symbol sequence. Hence different sequence
length will inevitably result in different scores, even though the
two words are the same, spoken by the same speaker. Clearly
there is a need to combat this problem so that the scores in such a
situation are close to each other.

0 0.5 1 1.5 2 2.5

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

A B C D E

Figure 2. Start point detection

Figure 2 shows how a digit utterance is separated from the si-
lence and non-speechsounds. Non-speech sounds normally have a
very different frequency spectrum from speech, and can be mostly
removed by band-limiting the input signal to voice band (100-
3400Hz) in the pre-processing stage. The pre-processing can also



filter out the possible DC bias caused by the recording devices. In
our voice verifier, we record each digit with a fixed length of at
least 2 seconds and prompt digits in such a way that there are al-
ways a minimum of 5500 samples of silence before the utterances.
After band-limiting and pre-processing the recorded speech, we
discard the first block of samples (block A in Figure 2) to remove
the possible spikes caused by the recording hardware. The next
block, block B, calculates the noise energy level, which will be
used as the threshold for determining the start point of the digit.
We continuously monitor the magnitude of the recording samples.
If the magnitude becomes greater than� times of the noise level,
we mark the sample as the start point of that digit and take a fixed
length block of samples as the training or testing data and store it
in a file.

Utterances picked in this way may still containnon-speech
sounds and silence, especially at the beginning of the digits. We
have found that the duration of a digit rarely goes over 4500 sam-
ples. So this value is used for segmenting the digits during the
training/verifying stage. In a further effort to accurately pick up a
digit, we search through the stored digit and find the peak position
of the digit. Then we go backward from this point and measure
the total energy in 100-sample blocks. If the energy drops below
certain value, then the middle point of that block will be marked
as the starting point of that digit.

This two-stage approach has been proved to work quite well,
making the system very robust to ambient noises.

3 Program description
The program has been developed as a 32-bit dynamic link library
(DLL) for Microsoft Windows 95/NT, so it can be easily incor-
porated into our person verification system[1]. The online DLL
interface is shown in Figure 3. To use the system, a user has to
type in his/her user name, and then speak the displayed digits to
the microphone. For the combined system with face verifier, the
face images are taken simultaneously while the user is speaking
the password.

To train the models, the user follows the same procedure as
with verification. The user can choose to re-train his/her models if
they already exist or to discard them and create new models.

Figure 3. The online voice verifier interface

4 Decision Making
Each digit spoken by a user produces a classification score for
that digit. When verified against a user’s own models, the utter-
ance should result in a lower score (or higher probability) than
with other users’ models. Shown in Figure 4 are the scores when
a user (User 1) speaks the digits “1”, “2” and ”3” and verifies
against other users. All scores are normalised by the user’s own
test score. There are quite large variations in the values between
different digits as well as users. Identifying user 1 from the rest

can be easily done by finding the lowest total scores. The separa-
tions between scores can be made greater with different combin-
ing method. Figure 5 shows the difference between combining all
the scores linearly and multiplying them together to get the total
score. Clearly the multiplication method gives better separation of
users.
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Figure 4. One user’s utterance is tested against other users’
models
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Figure 5. Different methods used for combining the scores of
different digits

In a real situation where a decision has to be made online, set-
ting a threshold to separate the true user from impostors is not a
trivial issue. Normally we choose the threshold that gives an equal
false-acceptance false-rejection error rate. Under different cir-
cumstances, however, it may be preferable to use a lower thresh-
old which gives lower false-acceptance rate than false-rejection
to provide a higher security, or vice versa. Even though differ-
ent users produce different verification scores, we have found that
dynamic thresholding among users did not provide any better per-
formance than a simple hard thresholding method. This could be
due to the passwords being random digits, which result in different
scores with each different combination.

Since the voice verifier forms part of the person verification
system, final decision as to whether a user is accepted or rejected
is based on the overall scores of the whole system. How to com-
bine the scores from the voice and face verifiers will largely affect
the overall system performance. We normalise the distance be-
tween the test score and the threshold to the range of [-1,1], with
the absolute value being a confidence measure toward either ac-
ceptance or rejection. Then we make the final decision based on



the total combined score of the two sub-systems. If the combined
score is non-zero, the user is accepted or rejected, depending the
sign of the score. When the score is zero, however, the voice and
face verifiers are equally confident of their decisions, then ambi-
guity occurs. In this case, we can either ask the user to try again,
which is the simpler solution, or introduce a weighting factor�
to one of the sub-systems and weight the other by1 � �. This
factor allows us to take into account the environment conditions.
If the environment condition is more favourable to voice recorder
than to the camera, e.g. quiet but poor lighting, we can weight
the voice score more heavily than the face score when combining
them. Otherwise, we will emphasise the face score when making
the final decisions.

5 Results
Shown in Figure 6 are the false-positive (acceptance) false-
negative (rejection) percentages for a password length of 5. Fig-
ure 7 shows the same performance indicator when the password
length is 7 digits. We obtain the false-negative data by testing a
user’s speech against his/her own models. In total, we tested 10
times for each user (12 users) using a random password (same
length, different permutations taken from the 9 digits) each time.
For the false-positive scores, a random password from each of the
12 users is tested against all other users’ models. Ten repetitions
of each digit are used for training the 6-state HMMs. The train-
ing and verification are done in a relatively noisy office with other
people talking and fan-noise from PCs and air-conditions in the
office. An equal error rate of 8% is achieved with a hard threshold
of 884. If the password length is increased to 9, the error rate will
be reduced to below 5%, as shown in Figure 8.

6 Conclusions
We have developed a voice verifier using HMM as part of a per-
son verification system based on face image and voice. The voice
verifier can be used as a stand-alone verification system which
would have a success rate of more than 92% in relatively noisy
environment, if the password length is 5 or more. The password
is a random combination of the 9 digits, and changes each time a
user tries to login. This makes the system more secure than those
systems using a fixed password. Because of the method used for
detecting the start/end points of digits and removal of noises and
non-speech sounds, the system is very robust against such prob-
lems.

The voice verifier has been integrated with the face verifier
developed within this division. A specific procedure was devel-
oped to combine the scores from the two sub-systems together and
make the final decision. The overall system performance is better
than 99% for equal rates of successful acceptance and rejection.

References
[1] G. T. Poulton, N. A. Oakes, D. G. Geers, R.-Y. Qiao,

M. D. S. Seneviratne, N. E. Frampton, Y. Choi and J. I. Ag-
binya, “The CSIRO PC-CHECK System”, Submitted to the
7th Intl. Conf. on Audio and Video based Biometric Per-
son Authentication (AVBPA’99), Washington, USA, March,
1999.

[2] S. B. Davis and P. Mermelstein, “Comparison of Para-
metric Representations for Monosyllabic Word Recognition
in Continuously Spoken Sentences”,IEEE Trans. ASSP,
Vol.28, No.4, pp.357-366, August 1980.

[3] Y. Linde, A. Buzo and R. M. Gray, “An Algorithm for Vector
Quantiser Design”,IEEE Trans. Commun., Vol. COM-28,
pp.1551-1588, Jan. 1980.

[4] L. Rabiner and B.-W. Juang,Fundamentals of Speech
Recognition, Prentice Hall, 1993.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

E
rr

or
 r

at
e 

(%
)

(884, 8.0)

alpha

FN

FP

5−digit password

Figure 6. False-positive false-negative scores with 5-digit
password
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Figure 7. False-positive false-negative scores with 7-digit
password
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different password lengths


