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1. ABSTRACT Pablo Picasso, human faces differ from each other in minor ways.
Since the publication of [10], face recognition researchers have

We have devised a new class of fast adaptation techniques fapplied dimensionality reduction techniques to training images
speech recognition, based on prior knowledge of speaker variaf faces to characterize the space of variation between faces. Of-
tion. To obtain this prior knowledge, one applies Principal Comten, these researchers use PCA, which generates an orthogonal
ponent Analysis (PCA) [9] or a similar technique to a training sebasis derived from the eigenvectors of the covariance or corre-
of T vectors of dimensioD derived fromI” speaker-dependent lation matrix of the input data [9]. PCA guarantees that for the
(SD) models. This offline step yieldE basis vectors, which original data, the mean-square error introduced by truncating the
we call “eigenvoices” by analogy with the eigenfaces employe@xpansion after thé& -th eigenvector is minimized. The dimen-
in face recognition [14,18]. We constrain the model for newsionality reduction can be a factor 66,000 or more [14,18].
speakerS to be located in K-space, the space spanned by theowever, other dimensionality reduction techniques can be used:
first K eigenvoices. Speaker adaptation then involves estimatirggg, linear discriminant analysis, singular value decomposition,
the K eigenvoice coefficients for the new speaker; typicaly, or independent component analysis [3].
is very small compared to the original dimensibn

We conducted mean adaptation experiments on the Isolet [11] proposed that such a technique be applied to SD mod-
database [2], using PCA to find the eigenvoices. In these efls to find speaker space, the topography of variation between
periments,D (number of Gaussian mean parameters) 2, speaker models. Dimensionality reduction techniques are al-
T was120, and K was set to several values betweleand20.  ready widely used in speech recognition, but at the level of acous-
With a large amount of supervised adaptation data, most eigefic features rather than of complete speaker models. In the eigen-
voice techniques performed slightly better than MAP or MLLR;voice approach, a set @f well-trained SD models must first be
with small amounts of supervised adaptation data or for unsupeiectorized”. |.e., for each speaker, one writes out floating-point
vised adaptation, some eigenvoice techniques performed muegefficients representing all HMMs trained on that speaker, cre-
better. For instance, when the supervised adaptation data wa{§g & vector of some large dimensién In our Isolet experi-
four letters pronounced once by the new speaker, the average f@€Nts, only Gaussian mean parameters for each HMM state were
ative reduction in error rate for an eigenvoice model with= 5 written out in this way, but covariances, transition probabilities,
was26% (18.7% error in unit accuracy for Sl baseline i3.8%  Or mixture weights could be included as well. Thevectors thus
error for eigenvoice); MAP and MLLR showed no improvement_obtained are called “SUperVectorsﬂ; the order in which the HMM
We believe that the eigenvoice approach would yield rapid adafarameters are stored in the supervectc_Jrs is arbitrar)_/, but must be
tation for most speech recognition systems, including ones witie same for all’ supervectors. In an offline computation, we ap-

a medium-sized or large vocabulary. ply PCA or a similar technique to the set of supervectors to obtain
T eigenvectors, each of dimensidn - the “eigenvoices”. The
first few eigenvoices capture most of the variation in the data, so
we need to keep only the firéf of them, wherek < T << D

2. WHAT ARE EIGENVOICES? (we let eigenvoirz:eé) bﬁ the mean vector). Theg¢ eigenvoices

. .span “K-space”.
“There are many examples of families of patterns for which it P P

is possible to obtain a useful systematic characterization. Often,
the initial motivation might be no more than the intuitive notion ~ Currently, the most commonly-used speaker adaptation tech-
that the family is low dimensional, that is, in some sense, angiques are MAP [6] and MLLR [13]; neither emplogspriori in-
given member might be represented by a small number of p&rmation aboutype of speaker The EMAP (“extended MAP”)
rameters. Possible candidates for such families of patterns €& RMP (“regression-based model prediction”) approach is an
abundant both in nature and in the literature. Such exampl@xception: here, phoneme correlations estimated from training
include turbulent flows, human speech, and the subject of thi#ata allow observations of any phoneme from the new speaker
correspondence, human faces” [10]. to update the HMMs for all phonemes [1,4,12]. Like speaker
clustering [1,5], our approach employs prior knowledge about
[10] introduced “eigenfaces” to researchers working on thgpeaker types. However, clustering diminishes the amount of
representation and recognition of human faces. Previously, facgaining data used to train each HMM, since information is not

had been modeled with general-purpose image processing tegfared across clusters, while the eigenvoice approach pools train-
niques. However, the true dimensionality of “face space” is mucihg data independently in each dimension.
lower than its apparent dimensionality - outside the ceuvre of



3. FINDING EIGENVOICE Thew(j) are theK coefficients of the eigenvoice model:
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Let new speakef be represented by a poiftin K-space. We o R 90 )
devised two techniques for estimatitityfrom adaptation data. To maximizeQ (A, A), setzes = 0,5 = 1... K} assum-
The projection estimator foP is similar to a technique com- jng the eigenvalues are independegtﬂ = 0,i # j. We
monly used in the eigenface literature. k€t), ..., e(K) be the  jpiain wG)
K eigenvoices; thel = [e(1)...e(K)] is a matrix of dimen-
sion (D x K). We now train an SD model on the adaptation AW (ELG)TCE o =
data, from which we extract a supervectoof dimensionD x 1 XS: Xm: Xt:
and project it into K-space to obtai®: P = E x ET x V. It %
is now trivial to generate the adapted HMMs {Srfrom P (if (s) (s) T ~(s)=1 _(s)(;
the D parameters inP represent only the Gaussian means, ai: Z Z%" (t){Zw(k)(em (k)" Co™ e (1)1,
for the experiments below, the remaining HMM parameters can® k= .
be obtained from an SI model). The main flaw of the projection j=1...
method is that for it to work well, alD parameters should be
observed at least once in the adaptation data.

m t 1

K

Thus, we havel equations to solve for th& unknownw(j)

values. The computational cost of this online operation is quite

reasonable - for instance, it is much “cheaper” than most im-
plementations of MLLR. To reduce computational cost, one can

3.2. Max. Likelihood Eigen-Decomposition choose a lowek (at the expense of accuracy). Note also that the

(MLED) Isolet experiments described below involved only one Gaussian

) ) o ) per states (so theK equations we solved for MLED estimation
We now derive the maximum-likelihood MLED estimator 8r i, the experiments were a special case of those just given).

in the case of Gaussian mean adaptation [15,16} i§ a Gaus-
sian in a mixture Gaussian output distribution for staie a set

of HMMs for a given speaker, let 4. EXPERIMENTS
n  bethe number offeatures 4.1. Protocol and Results
o be feature vector (length) at timet
¢~ beinverse covariance fon in states We conducted mean adaptation experiments on the Isolet database

[2], which containss sets 0f30 speakers, each pronouncing the
alphabet twice. After downsampling to 8kHz, five splits of the
data were done. Each split todkof the sets 120 speakers) as

training data, and the remaining s80 (speakers) as test data;

/lﬁfl) be adapted mean for mixture of s
$(t)  betheL(m, s\, o¢) (s-m occupation prob.)
To maximize the likelihood of observatio® = o; ...or

W.rt. ), we iteratively maximize aauxiliary functionQ (X, A),
wherel is current model and is estimated model [13]. We have e trained120 SD models on the training data, and extracted

results given below are averaged over the five splits. Offline,

a supervector from each. Each SD model contained one HMM

. per letter of the alphabet, with each HMM having six single-
QXA = —%P(OP\) x> 3N A0 f ok, 5,m) Gaussian output states. Each Gaussian involved eighteen “Per-
s m t ceptual linear predictive” (PLP) [7] cepstral features whose tra-
jectories were filtered. Thus, each supervector contaiDeg
where 26 6 x 18 = 2808 parameters.
f(or,5,m) = [nlog(2m) + log|CS| + h(oy, s,m)] For each of the30 test speakers, we drew adaptation data
and from the first repetition of the alphabet, and tested on the entire

second repetition. SI models trained on 1R training speakers
yielded81.3% word percent correct; SD models trained on the
entire first repetition for each new speaker yield®d6%. We
h(or,5,m) = (o0 — )" O~ (o0 = i) P i ermondl
Consider the eigenvoice vectar§j) with j = 1... K:

results are shown in Table 1) are MAP with Sl prior (“MAP”),
N [y, - ()1 T global MLLR with SI priors (“MLLR G”), and MAP with the
e(j) = [61 (7),es (d),-- - em’ (9), - MLLR G model as prior (“MLLR G=> MAP"). For MAP tech-
niques shown here and below, we se& 20 (we verified that
whereels (j) represents the subvector of eigenvojceorre-  results were insensitive to changes-n
sponding to the mean vector of mixture Gaussiann states.
Then we need

also tested three conventional mean adaptation techniques, using
various subsets of the first alphabet repetition for each speaker
as adaptation data. The three techniques (whose unit accuracy

Using the whole alphabet as adaptation data, we carried out

both supervised and unsupervised adaptation experiments (first-
pass Sl recognition for unsupervised adaptation); the results are

K
T
o= [ﬂgl),ﬂgl), IR ] = Zw(j)e(j) denoted aslph. sup. andalph. uns.in Table 1. The other

Jj=1

experiments in Table 1 involve supervised adaptation employing



subsets of the alphabet as adaptation data. These include a bal- Ad- data | MLED.5, =>MAP | MLED.10,=>MAP
anced alphabet subset of si¥g bal-17={C D F G I J M alph. sup. 86.5, 88.8 87.4,89.0
NQRSUV W XY Z}, and two subsets of sizg AEOW alph. uns. 86.3, 80.8 86.3, 81.4
andABCU, whose membership is given by their names. Finally, | bal-17 86.5, 86.0 87.0, 86.8
since we can't show alt6 experiments using a single letter as AEOW 86.2, 85.4 85.8, 85.3
adaptation data, we show results for(the worst MAP result), ABCU 86.3, 85.2 86.4, 85.5
the average result over single all lettexse(1-let.) and the result W (worst) 82.2,81.8 79.9,79.2
for A (the best MAP result). For small amounts of data MLLR | ave(1-let.) 84.4,83.9 82.4,81.8
G and MLLR G=> MAP give pathologically bad results. V (best) 85.7,85.7 83.2,83.1
Ad. data | MAP | MLLRG | MLLR G => MAP Table 3: EIGENVOICES: PARTIAL ALPHABET
alph. sup.| 87.4 85.8 87.3
alph. uns.| 77.8 815 78.5
2%'01\,7\, ?332 ﬂ:i ?éji 4.2. What Do the Eigenvoices Mean?
ABCU 78.6 17.0 17.5
D (worst) | 77.6 3.8 3.8 We tried to interpret the eigendimensions for one of the five splits
ave(l-let.)| 80.0 3.8 3.8 in these experiments. Figure 1 shows how as more eigenvoices
A(best) | 81.2 3.8 3.8 are added, more variation in the training speakers is accounted

for. Eigenvoicel accounts foil8.4% of the variation; to account
for 50% of the variation, we need the eigenvoices up to and in-
Table 1: NON-EIGENVOICE ADAPTATION cluding numben4.

To carry out eigenvoice experiments, we performed PCA on
the T = 120 supervectors (using the correlation matrix), and
kept eigenvoice$...K (0 is mean vector). First, we studied the 100 ‘ ‘ ‘ ‘ ‘
effect of K and of estimation method. For these experiments,
shown in Table 2, the whole alphabet was used as supervised
adaptation dataa(ph. sup. data option). “PROJ.K” is eigen-
voice model obtained by projection into K-space, “MLED.K”
is the maximum-likelihood eigenvoice model in K-space, and
“MLED.K => MAP”is MAP using MLED.K as the prior. Com-
parison with thealph. sup.row of Table 1 shows that MLED.K
=> MAP outperforms the non-eigenvoice techniques by a smal
amount.
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Figure 1:Cumulative variation by eigenvoice number
Table 2: EIGENVOICES: VARYING K &lph. sup)

For unsupervised adaptation or small amounts of adaptation We looked for acoustic correlates of high) or low (—)
data, some of the eigenvoice techniques performed much betordinates, estimated on both alphabet repetitions, fotihe
than conventional techniques (Table 3). Here, we tested eigelsolet speakers in dimensiois2, and3. Dimensionl is closely
voice techniques witl = 5 and K = 10 and the same adap- correlated with sex7 of 75 women in the database have
tation data as in Table 1. Thus, we tried MLED.5, MLEB=5  values in this dimension, al5 men have+ values) and with
MAP (“=>MAP” after “MLED.5” in Table 3), MLED.10, and FO. Dimensior2 correlates strongly with amplitude: values
MLED.10=> MAP (“=>MAP" after “MLED.10"). For single- indicate loudness;} values softness. Both findings are rather
letter adaptation, we shol¥” (letter with worst MLED.5 result), surprising: PLP cepstral features should not contain pitch or am-
the average resultsre(1-let.) and results fol” (letter with best  plitude information. However, both pitch and amplitude may be
MLED.5 result). Note that unsupervised MLED.5 and MLED.10strongly correlated with other types of informaticad, loca-
(alph. uns) are almost as good as supervisalpl). sup). The SI  tions of harmonics, spectral tilt) which are likely to survive PLP
performance i81.3% word correct; Table 3 shows that MLED.5 cepstral parametrization. Finally; values in dimensior cor-
can improve significantly on this even when the amount of adapelate with lack of movement or low rate of change in vowel for-
tation data is very small. We know of no other equally rapidnants, while speakers with values show dramatic movement
adaptation method. towards the off-glide.



5. DISCUSSION

1.

Some other researchers share our belief that fast speaker adap-
tation can be achieved by quantifying inter-speaker variation.

N. Strim models speaker variation for adaptation in a hybrid 2.
ANN/HMM system by adding an extra layer of “speaker space
units” [17]. There is one such unit per training speaker; when the
system is being trained on speakethe activity of uniti is set 3
to 1 and all other activities are set @ Strdm found moderate
improvement for the adapted system over the baseline for four or
more words. Examination of the connections in the ANN indi-
cated that male and female speakers form two separate clusters
in speaker space ([17], Fig. 2). 5.

After submission of this paper in April 1998, we became
aware of some excellent research along similar lines, unpub- 6.
lished at that time. Huet al [8] focus on vowel classification
by Gaussian mixture classifiers, but their approach could be ex-
tended to cover all phonemes. PCA is performed on a set of
training vectors consisting, for each speaker, of the concatenated 7
mean feature vectors for vowels. Vowel data from the new speaker
is projected onto the eigenvectors to estimate the new speaker’s
deviation from the training speaker mean vector. Finally, clas-
sification is carried out either by subtracting the deviations from
the new speaker’s acoustic data (speaker normalization) or by 8.
adjusting the Gaussian classifier means to reflect the deviation.
This technique can be seen as a special case of the eigenvoice ap-
proach for mean adaptation. In this special case, only HMMs for
vowels are employed, each HMM has a single state with a single 9.
Gaussian output distribution, and the projection technique is used
to estimate the eigenvoice coordinates for the new speakest Hu
al find significant improvements over an Sl baseline if their adap-
tation approach is used, for both supervised and unsupervised
adaptation. As it did in our experiments, the first coefficient in
their experiments separates men and women (though it accountst1-
for 93.8% of variation vs. only about8% in our case).

12.

In the small-vocabulary speaker adaptation experiments de-
scribed in this paper, the eigenvoice approach reduced the de-
grees of freedom for speaker adaptation frém= 2808 to 13.
K <= 20 and yielded much better performance than other tech-
niques for small amounts of adaptation data. These exciting
results provide a strong motivation for testing the approach in
medium- and large-vocabulary systems. We also plan to study ;
the robustness of the approach to deterioration in the quantity
or quality of the training datae.g, fewer training speakers or
less data per training speaker, mismatch between training and
test environments, differences in dialect between training and test15.
speakers. We will also experiment with discriminative training of
the original SD models. Other important issues include training 16.
of mixture Gaussian SD models (for the resulting eigenvoices
to be useful, Gaussianfor phonetic unitP in a given training 17
SD model must mean the same thing as Gaussiam P for )
another training speaker - how can this be ensured?) and the per-
formance of eigenvoices found by dimensionality reduction tech-
niques other than PCA. We hope to explore Bayesian versions of18.
the approach: estimate the positiarof the new speaker in K-
space by maximizind®(O|A) x P(X) (MLED only maximizes
the first term). Finally, we have begun to apply the eigenvoice
approach to speaker verification and identification, with encour-
aging early results.
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