IMPROVING SPEAKER IDENTIFICATION PERFORMANCE IN
REVERBERANT CONDITIONS USING LIP INFORMATION

T. Wark and S. Sridharah

Speech Research Laboratory
School of Electrical and Electronic Systems Engineering
Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia
ft.wark@qut.edu.ats.sridharan@qut.edu.au

ABSTRACT features for robust ASI. As visual lip information is uneffected
This paper considers the improvment of speaker identh‘icatiokf’ty reverberant cond_iton_s, we are intereste_d in parti_cular_ t_o eyalu-
performance in reverberant conditions using additional lip in2te the extent to which lip |_nformat|on can improve identification
formation. Automatic speaker identification (ASI) using Speeclﬁ)erformance as reverberation of speech Increases.
characteristics alone can be highly successful, however problems For experiments we use the M2VTS multi-modal database [5]
occur with mis-matches between training and testing conditiong.ons"stm‘:‘].Of 37 subject_s countl_ng frameroto neuf in French
In particular, we find that ASI performance drops dramaticaII)PVer five different recording sessions.
when given anechoic training but reverberant test speech. Pre-
vious work [1][2] has shown that speaker dependant information 2. FEATURE EXTRACTION
can be extracted from the static and dynamic qualities of moving
lips. Given that lip information is uneffected by reverberation2 1, Audio Sub-system
we choose to fuse this additional information with speech data.
We propose a new method for estimating confidence levels to alhe audio sub-system feature extraction is quite standard, with
low adaptive fusion of the audio and visual data. Identificatiofnel-cepstral features [6] being extracted from the speech. Mel-
results are presented for increasing levels of artificially reverbegepstral features have been shown in the past to be well suited for
ated data, where lip information is shown to provide excellent ASspeaker identification purposes, hence their use in this application.

peformance improvement.

2.2. Visual Sub-system

1. INTRODUCTION We have presented in detail [1] a new method for lip tracking
. ) using a combined chromatic-parametric approach, however, un-
Room reverberation ofspe_ech occurs to some extent in almost ags past approaches [7][8], the parametric lip contour model is
enclosed area. As sound is reflected off walls back to the sourGgarived directly from the chromatic information, with no mini-
the resulting speech spectrum is smeared, reducing both spe@ghation procedure required to fit the model to the lips. Features
intelligibility and speaker dependent qualities. We can mathemajye extracted via colour profiles taken around the lip contour. As
ically express a reverberated signéh) as the convolution of the  he contour model follows the moving lips, the chromatic features
original signals(rn) with the room impulse respongén): are consistent with respect to the lip position. This is illustrated
in Figure 1.
r(n) = s(n) = h(n) @
The effects of speech reverberation on Automatic Speaker
Recognition (ASR) has not been studied extensively in the past,
however work which has been done demonstrate a considerable
drop in recognition performance. The case of Automatic Speaker
Verification (ASV) under varying reverberant conditions has been
considered [3], and it is shown that ASV peformance degrades
sharply as reverberation time is increased and/or the enclosure
size is decreased.
Other researchers [4] have considered the use of acoustic ar- Figure 1: Colour Profile Vectors
ray processing and spectral normalisation to develop a more ro-
bust ASR system in reverberant conditions. Some performance ) o
improvement can come about as a result of these steps. Features are reduced via the use of Principal Compo-
In this paper we propose the use of lip information as an adent Analysis (PCA), followed by Linear Discriminant Analy-

ditional source of information to fuse with reverberated speechiS (LDA). In this way, lip features are chosen which provide the
greatest discrimination between speakers. We describe these fea-

This work was supported by a CSIRO research contract. ture reduction steps in more detail elsewhere [1].




3. PRIMARY CLASSIFIERS 4.2. Equal Prior Weights

Classification of both audio and visual data was achieved via te" @n artificial test set, where the identity of the target speaker
use of the Gaussian Mixture Model (GMM). These models have® know_n, the optimum value af can be emplrl_cally determined
been used extensively in the past for the modelling of the outp® Varying the level ofa, according to Equation 3, betweén
probability distribution of features for a particular speaker [6]:'jlnd 1 Th's howe_ver. IS |nconseque_nt|al _for a real life Spe‘.”"‘er
The multi-modal nature of the model allows it to cater for a widddentification application where the identity of the speaker is of

range of voice characteristics for each speaker. course not known. _ . .
Experiments also showed that ttlistribution pattern®f fea- Without making any prior assumptions about the quality of

tures from a speaker’'s moving lips, over a period of time, helgach datadsource, a Leaf]onable _%onjpror?ik')se :15 t@ds_et).5.dln_ |
speaker dependent qualities, as well as the actual static featuf} Eer words we weight the contribution of both audio and visua
themselves. Based on this, we chose also to use the multi-mo 2 equqlly for the |dent|f|capon prqblem. The resuits for using
nature of the GMM to allow it to model the the wide variation in 1S technique are presented in Section 5.
features from a speakers moving mouth.

The decision rule for identifying a speaker, based on Bayeg] 3, Dispersion Confidence Measure

rule [6], is defined as:
The technique presented in Section 4.2 is not capable of adapting

T to the surrounding environment in that the system weighting is
§ = arg max Z log p(ze|As) (2) fixed regardless of the quality of either data source. The technique
1<s<S = presented in this section is capable of adapting the weighting fac-
tor based upon the quality of data at the time of testing.
wherez; is an input feature vector at timg and \; is the The system achieves this by considering the dispersion of
audio or visual model for speakerf S total speakers. scores, or average output log-likelihoods, from the audio and vi-
sual primary classifiers. In general, we would expect that for
the case of high-quality information, the GMM score assigned

4. AUDIO-VISUAL FUSION SYSTEM to the correct speaker model would be significantly higher than
the scores assigned to the other speaker models.
4.1. System Structure Based on this, the confidence measure we used was taken as

thedifferencen the top two speaker models scores, normalised by

The aim of any fusion system is to combine information fromthe meanof all speaker model scores for the audio and visual
various sources so that, in the case of identification, the resuliata respectively. This can be expressedsfepeakers as:
ing performance is greater than or equal to the performance of
the best individual source. Anything less than this is termed as Upest = arg max log P(As|%) 4)
catastrophic fusiorf9], and is of course undesirable for a speaker l<iss
identification problem. _ N g

Two main approaches can be taken for fusion, being that of Unestbest = A8 121%)(5 log P(As[@), & # i = upest (5)
direct fusion, andoutput fusion [10]. In direct fusion features s
from each source are combinpdor to classification, where-as in . l log P(\|7) ©)
output fusion, features from each source are separately classified, Umean = g Z 08 v
with the classifier outputs then being combined. Past research
[11] has shown thadutputfusion is in general superior for audio _ |tubest — Unewtbest|
and visual fusion. m= [Umean]|

The basic structure of our fusion system is thatasn-
chronous linear outpufusion. Here the identification decision bot
is based upon a linear combination of outputs from the audio ando
visual classifiers after the speaker has spoken for a short period of

i=1

)

wherex is the confidence measure which is evaluated over
h audio and visual classifier outputs, notatedl ag ands;s-
We then evaluate the weighting facterc [0, 1] as:

time. This can be expressed mathematically as: o= Kaud ®)
N Kaud + Kuis
P(s|#*,&") = aP(A2|Z%) + (1 — a)P(A!|Z") ?) The results from this technique are also presented in Sec-
tion 5.

whereP(s|Z%, Z") is the probability of speakerhaving gen-
erated the audio and visual feature vect8tsandz”, given the 4.4. Secondary Classifiers
audio and visual primary classifieAd and A and a weighting
factor ofa € [0, 1]. The dispersion measure is in itself a reasonable confidence mea-
Given this fusion structure, the main challenge is to determinsure for audio-visual fusion, however the technique breaks down
an appropriate weighting to assign to the audio and visual classithen an incorrectly classified score stands out well above the
fier outputs. As the level of speech degradation increases duedther classifier scores. In this situation the confidence measure
increasing noise, we would wish to place more and more emphaull assign a high level of confidence to the particular data while
sis on visual information. Hence we need some way to assighe classifier outputs are quite incorrect. We can improve on this
a measure of confidence to the incoming audio and visual datay designing a system which can provide an indication of the
drawn from the data itself. The following sections present threglobal accuracy of the best classifier scores when comparing be-
methods for allocating weights to audio and visual data. tween the audio and visual sub-systems.



4.4.1. Mathematical Description - N7de isthe number of frames for each speaker for either

frame

. . - audio or video data, used to evaluate the OPD
To achieve this we propose secondaryclassifier stage, where

the probability distributionsof the scores of the primary classi- - ui* and w?** are the frame output log-likelihoods
fiers are modelled themselves by uni-variate Gaussian models. In from audio and visual primary classifiers for thié
other words, we postulate that the distribution of scardsom speaker respectively, wheng™ede = u{j"de for j €
a speaker’s Gaussian Mixture Model can be adequately modelled [1,2,...,Npode ]
as:
We then normalise the primary output log-likelihoods as:
1 1 r—1
pi(u) = o121y 1/2 ¢XP [——(U —pi) 27 (u— Mi)]
(271-) |El| 2 aud __ _aud aud
) Yi =i~ Hglobal (€]
where:
- i € [1, 8] for S speakers Yl = ul = pbishar (12)

- u is the output log-likelihoods from audio or visual pri-

aud vis —
Fl]a;y GM]'\VA Al ]and AP, wherew = w, for ¢ € It is important to note that the secondary models are trained
1& 0 e ey S frames on the output log-likelihoods from theorrect speaker’s primary
- pandX are the mean vector and covariance matrix respegnodel only. In other words, the secondary modelis trained
tively for the output log-likelihoods from the audio and vi- with the log-likelihoods resulting from the primary audio and vi-
sual primary modela¢“? andAy™. sual GMM's\¢*¢ andAY*® when they are self tested with training
The distribution of the scores from a speaker’s model is calle@iata from speakei. Thus at test time, we arenly interested in
the output probability distribution (OPD). The motivation for €valuating the output log-likelihoods from the primary audio and
modelling OPD’s with univariate Gaussian models is evident fronvisual maximally likely GMM'sA3“¢ andA{*, wheres is calcu-
Figure 2. The diagrams show the distribution of output probabillated as:
ities for an audio primary classifier, tested on four different oc-

fori € [1,2,...,5], whereS is the number of speakers.

casions. For the first three occasions, the classifier is tested with Tmode ode |~ mode

its own training data from three different sessions, whilst on the  3mode = arg max E log p(zi**“|N"7) (13)
. .o . . . 3

fourth session, the same classifier is tested with noisy test data. t=1

Session .- CLEAN Session2 - CLEAN where S is the number of speakers afit), 4. is the number of
frames of data available for testing for either the audio or visual
frames of information.
. In other words, we only evaluate the audio and visual sec-
05 l Hﬂﬂ o5 HH HH o_ndary modelgy¢ 4 andnp;_”'S correqunding to thikestaudio ar_1d

a [ el e visual scores from the primary classifiers. Thus we determine the
final audio and visual confidence measures as:
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Vaud = P(‘P?:it |yaud ) (14)

Sbest

mﬂﬂHHHHHHHHHHHH vois = P(5,0,, Y5,e.,) (15)

wherep?"? "andy?i  are the secondary Gaussian models
corresponding to the best scores from the primary audio and vi-
sual GMM’s, andy?“? andy*  are the respectiveormalised

Sbest Sbest

h primary output log-likelihoods.

The audio and visual confidence scores are finally normalised
add to one. Hence for the definition afin Equation 3 we
falculatea € [0,1] as:

probability
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Figure 2: Output Probability Distributions (OPD)

By modelling the OPD’s for high quality data for eac
speaker model, we have a basis to indicate the quality of incomiqg
data to each speaker model.

The absolute values of the log-likelihoods from the primar
classifiers are independent of the mean of the log-likelihoods of Vaud
all classifiers. Hence before training the secondary classifiers on a=—"C (16)
the primary OPD’s, waormalisethese values by dividing by the Vaud + Vois
global mean of the output log-likelihoods from all speaker classi-
fiers. We define the global mea;o+.; for audio and visual data

5. EXPERIMENTS

as:
ZS N}'Y;C;i{:e mode . . . . e .
u;’?ggfz _ Lui=1 Zuj=1 i (10) We trained and tested the audio and visual identification systems
N}’;‘,’l‘ﬁes using the M2VTS multi-modal database [5]. The database con-
where: sists of over 27000 colour images of 37 subjects counting from

zeroto neuf in French, on five different occasions. We used the
first three recording sessions as training data, and the fourth ses-
- S'is the number of primary speaker models sion as test data.

- mode C [aud, vis]



5.1. Audio Sub-system as secondary GMM classifiers trained upon output score distri-

butions for high quality data. The use of secondary classifiers

The speech data was artificially revert_;erated _using an im"’_‘%ables a "knowledge” to be built into the system as to the quality
method [3], where the level of reverberation was increased by i incoming audio or visual data.

creasing the reflection coefficients of the simulated room. One of * Thg results of experiments are encouraging and show the im-

the aims of the testing process was to evaluate the improvemes¥ iance of lip information for speaker identification when speech
from training with clean and testing with reverberated speech, 1@ highly degraded due to reverberation. Whilst the amount of data

training with clean and reverberated speech. To evaluate the latigr speaker is limited, results are promising for future larger-scale
case, we reverberated the training speech in a room which Was, k in the multi-modal area.

different to any of the conditions the test speech was subjected to,
this being a realisable step for a real-life problem.

We found that the addition of reverberation to the training 7. ACKNOWLEDGEMENT
data, dramatically improved results for testing with reverberated . ) o
speech data, however the identification accuracy was still low fdrDiS work was carried outin support of the European Commission
high reverberation time. The results of this are shown in Figure CTS Project M2VTS.
which confirm results presented in [3].
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