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ABSTRACT

We describe a method for automatically learning head-
transducer models of translation from examples consisting of
transcribed spoken utterances and their translations. The method
proceeds by first searching for a hierarchical alignment
(specifically a synchronized dependency tree) of each training
example. The alignments produced are optimal with respect to a
cost function that takes into account co-occurrence statistics and
the recursive decomposition of the example into aligned
substrings. A probabilistic head-transducer model is then
constructed from the alignments.

We report results of applying the method to English-to-Spanish
translation in the domain of air travel information and English-
to-Japanese translation in the domain of telephone operator
assistance. We also report on a variation on this model-
construction method in which multi-word pairings are used in
the computation of the hierarchical alignments and head
transducer models.

1. INTRODUCTION

Head-transducer translation models [3] are collections of
weighted middle-out finite state transducers applied
hierarchically in the style of recursive transition networks.
Unlike the work of Brown et al.[4],[5], head transducers take
into account the structuring of natural language strings into
phrases. They do not require the very large amounts of training
material necessary for example-based translation (e.g. [8]). In
contrast to simple finite state models such as those used by Vilar
et al. [9] the number of states does not become extremely large
when faced with languages with large word order differences.
The work reported in [10], which uses an inside-outside type of
training algorithm to learn statistical context-free transduction,
has a similar motivation to the current work, but the models we
describe here, being fully lexical, are more suitable for direct
statistical modeling.

In previous work [1], we showed that the weights of a head
transducer model with hand-coded structure can be trained to
give better performance than a comparable transfer-based
system. We also showed [2] that both the network topology and
parameters of a head transducer translation model can be learned
fully automatically from a bilingual corpus by hypothesizing
head transducers on the basis of a non-hierarchical word
alignment, as we demonstrated for English-to-Spanish
translation. In this paper, we describe a method for generating
hierarchical alignments on the basis of source-target co-
occurrence statistics, and using these alignments directly in the
generation of head-transducer models.

In Section 2, we define the hierarchical alignments we use as
synchronized dependency trees. We explain the steps of the
training method in Section 3. In section 4, we describe
experiments we have used to evaluate this method for English-
to-Spanish and English-to-Japanese translation as part of our
research effort on spoken language translation.

2. HIERARCHICAL ALIGNMENTS

Our training method for head-transducer models only requires a
set of training examples. Each example, or “bitext”, consists of a
source language string paired with a target language string. In
our experiments, the bitexts are transcriptions of spoken English
utterances paired with their translations into Spanish or
Japanese.

A hierarchical alignment consists of three mappings: an
alignment mapping f from source words w to target words f(w),
a source head-map g mapping source dependent words w to their
heads g(w) in the source string, and a target head-map h
mapping dependent target words v to their head words h(v) in
the target string. An example hierarchical alignment is shown in
Figure 1.

Under a hierarchical alignment, the source and target strings of a
bitext are decomposed around a “head” word w in the source
string and a corresponding target translation f(w) in the target
string, as shown in Figure 2. The decomposition is recursive in
that the substring to the left of w (the “left substring”) is
decomposed around a left head word wl , and the substring to the
right of w (the “right substring”) is decomposed around a right
head word wr. This process of decomposition continues for each
left and right substring until it only contains a single word.

The alignment corresponds to synchronized dependency trees if:

1. For any two distinct words w1 and w2 in the source, f(w1) is
distinct from f(w2).

2. The image under f of each left substring in the
decomposition is a contiguous segment of the target string.

Figure 1: A hierarchical alignment showing the source
head mapping g, alignment mapping f, and target head
mapping h.
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3. The image under f of each right substring in the
decomposition is a contiguous segment of the target string.

4. Whenever w is aligned with v, then g(w) is aligned with
h(v), that is, f(g(w)) = h(f(w)).

3. TRAINING METHOD

The training method has four stages: (i) Compute co-occurrence
statistics from the training data. (ii) Search for an optimal
hierarchical alignment (specifically, a synchronized dependency
tree) for each bitext. (iii) Record hypothesized head-transducer
transitions which can generate the synchronized dependency
trees. (vi) Compute a maximum-likelihood head-transducer
model from the transition counts.

3.1 Compute pairing costs

For each source word in the dataset, assign a cost, the
“translation pairing cost” c(w,v) for possible translations into the
target language. These translations of the source word may be
zero, one, or several target language words. The assignment of
translation pairing costs (effectively a statistical bilingual
dictionary) may be done using various statistical measures. Our
preferred choice of statistical measure for assigning the costs is
the so-called φ correlation measure ([6]). We apply this statistic
to co-occurrence of the source word with all its possible
translations in the dataset examples. We have found that, at least
for our data, this measure leads to better performance than the
use of the log probabilities of target subsequences given source
words (cf [4]).

In addition to the correlation measure, the cost for an alignment
includes a distance-measure component that penalizes pairings
in which the source subsequence and target subsequence are in
very different positions in their respective sentences.

3.2 Compute hierarchical alignment

For each bitext there are several possible hierarchical
alignments. We wish to find such an alignment that respects the
co-occurrence statistics of bitexts as well as the phrasal structure
implicit in the source and target strings. For this purpose we
define a cost function on hierarchical alignments. The cost
function is the sum of three terms. The first term is the total of
all the translation pairing costs c(w, f(w)) of each source word w
and its translation f(w) in the alignment. The second term is
proportional to the distance in the source string between
dependents wd and their heads g(wd), and the third term is
proportional to the distance in the target string between target
dependent words vd and their heads h(vd).

The hierarchical alignment which minimizes this cost function is
computed using a dynamic programming procedure. In this
procedure, the pairing costs are first retrieved for each possible
source-target pair allowed by the example. Adjacent source
substrings are then combined to determine the lowest cost
subalignments for successively larger substrings of the bitext
satisfying the constraints in Section 2. The successively larger
substrings eventually span the entire source string, yielding the
optimal hierarchical aligment for the bitext.

3.3 Record transducer fragments

Head transduction models consists of a collection of head
transducers; the purpose of a particular transducer is to translate
a specific source word w into a target word v, and further to
translate the pair of sequences of dependent words to the left and
right of w to sequences of dependents to the left and right of v.
When applied recursively, a set of such transducers effects a
hierarchical transduction of the source string into the target
string.

A distinguishing property of head transducers, as compared to
‘standard’ finite state transducers is that they perform a
transduction outwards from a ‘head’ word in the input string
rather than by traversing the input string from left to right.  A
head transducer for translating source word w to target word v
consists of a set of states q1(w:v) q2(w:v)… and transitions of the
form:

(qi(w:v), qj(w:v), wd , vd , α , β)

where the transition is from state qi(w:v) to state qj(w:v), reading
the next source dependent wd at position α relative to w and
writing a target dependent  vd at position β relative to v.
Positions left of a head (in the source or target) are indicated
with negative integers, while those right of the head are
indicated with positive integers.

The construction of head-transducer states and transitions from
alignments is described in [2]. We illustrate this with an
example in Figure 3. The figure shows the immediate dependent
transitions generated for head words flights and los vuelos from
the hierarchical alignment in Figure 1. This corresponds to the
configuration shown in Figure 2, with source dependents to the
left and right, and two target dependents to the right.

3.4 Build head-transduction model

The head transducer models we use in the present work include
parameters for the probability of choosing a target word v to
translate a source word w, that is, the probability

P(q(w:v) | w)

w… wl ... … wr ...

… f( wl ) ...… f( wr ) ...f(w)

Figure 2: Decomposing source and target strings around
heads w and f(w)

BOSTON:BOSTON

-1:+1 +1:+2

NONSTOP:SIN ESCALAS

Figure 3: Dependent transitions generated for source and
target heads w = FLIGHTS and f(w)=LOS VUELOS



of choosing an initial head transducer state q(w:v) given w. The
model also includes the transition event probabilities for
generating source and target dependents of w and v at positions
α in the source and β in the target:

P(qj(w:v), wd , vd , α, β  | qi(w:v)).

Maximum-likelihood estimates of these probabilities are
computed from the counts for hypothesized states and transitions
constructed from the hierarchical alignments. When a model is
applied to translate a source sentence, the chosen derivation of
the target string is the derivation that maximizes the product of
the above transducer event probabilities.

4. EXPERIMENTS

4.1 Evaluation Method

In order to be able to reduce the time required to carry out
training-evaluation experiments, we have chosen two simple,
string-based evaluation metrics that can be calculated
automatically. These metrics, simple accuracy and translation
accuracy, are used to compare the target string produced by the
system against a reference human translation from held-out data.

Simple accuracy is computed by first finding a transformation of
one string into another that minimizes the total weight of
insertions, deletions and substitutions. (We use the same weights
for these operations as in the NIST ASR evaluation software
[7].) Translation accuracy includes transpositions (i.e.
movement) of words as well as insertions, deletions, and
substitutions. We regard the latter measure as more appropriate
for evaluation of translation systems because the simple metric
would count a transposition as two errors: an insertion plus a
deletion.  (This issue does not arise for speech recognizers
because these systems do not normally make transposition
errors.) If we write I for the number of insertions, D for
deletions, S for substitutions, T for transpositions, and R for
number of words in the reference translation string, we can
express the metrics as follows:

simple accuracy = 1 – (I+D+S)/R

translation accuracy = 1 – (I+D+S+T)/R

Since a transposition corresponds to an insertion and a deletion,
the values of I  and D will be different in the expressions for
computing the two accuracy metrics.

For Spanish, the units for string operations in the evaluation
metrics are words, whereas for Japanese they are Japanese
characters.

4.2 English-to-Spanish

The training and test data for the English-to-Spanish
experiments were taken from a set of transcribed utterances from
the air travel information system (ATIS) corpus together with a
translation of each utterance to Spanish. An utterance is
typically a single sentence but is sometimes more than one
sentence spoken in sequence. Alignment search and transduction
training was carried out only on bitexts with sentences up to

length 20, a total of 13966 training bitexts. The test set consisted
of 336 held-out bitexts. Table 1 shows the word accuracy
percentages (see Section 4.1) for the trained mode, e2s, and a
correlation-based word-for-word baseline, sww, against the
original held-out translations at various source sentence lengths.

Len. ��� ���� ���� ���� All

Sww 44.8/46.0 46.2/48.0 46.6/48.2 45.2/46.8 44.8/46.4

e2s 76.2/78.2 78.6/80.9 78.7/80.4 76.4/78.3 75.4/77.3

Table 1: Simple accuracy/Translation accuracy (percent) for the
trained English-to-Spanish model (e2s) against the word-for-
word baseline (sww).

4.3 English-to-Japanese

The training and test data for the English-to-Japanese
experiments was a set of transcribed utterances of telephone
service customers talking to AT&T operators. These utterances,
collected from real customer-operator interactions, tend to
include fragmented language, restarts, etc.  The training set was
restricted to those with at most 20 English words, giving 11490
bitexts. The test set, without a length restriction, comprised 621
held-out bitexts. In the Japanese text, we introduce “word”
boundaries that are convenient for the training process. These
word boundaries are parasitic on the word boundaries in the
English transcriptions: the translators are asked to insert such a
word boundary between any two Japanese characters that are
taken to have arisen from the translation of distinct English
words. This results in bitexts in which the number of multi-
character Japanese “words” is at most the number of English
words. However, as noted above, evaluation of the Japanese
output is done with Japanese characters, i.e. with the Japanese
text in its natural format. Table 2 shows the Japanese character
accuracy percentages for the trained  English-to-Japanese model,
e2j,and a correlation-based word-for-word baseline, jww.

Len. ��� ���� ���� ���� All

jww 70.9/74.6 42.5/49.2 32.1/38.7 28.7/35.8 28.7/35.8

e2j 88.9/89.0 76.0/78.0 65.1/68.7 63.6/67.5 63.6/67.5

Table 2: Simple accuracy/Translation accuracy as percentages
of Japanese characters, for the trained English-to-Japanese
model (e2j) and the word-for-word baseline (jww).

5. MULTI-WORD PAIRINGS

We have so far discussed the primitive pairings for bitext
alignments as simple pairs of source and target words, w and v.
In this section, we consider the effect of using phrasal pairings,
in which w and v are generalized so they can be short substrings
of the source and target strings. Examples of such multi-word
pairs are “SHOW ME” and “SIN ESCALAS” in Figure 1. The
cost for such pairings still uses the same φ statistic, now taking
the observations to be the co-occurrences of the substrings in the



training bitexts. However, in order that these costs can be
comparable to the costs for simple pairings, they are multiplied
by the number of words in the source substring of the pairing.

The use of phrasal pairings does not require any fundamental
changes to the hierarchical alignment dynamic programming
algorithm, which now produces dependency trees with heads
that can be multi-word sequences. In the transducer construction
phase of the training method, the least common word in a source
multi-word sequence is taken to be the “real” head word, and a
chain of transitions is constructed to transduce the other
elements of the multi-word sequence. Thus the final head-
transducer still only deals with single word units, and there is no
need for a separate phrase-identification phase when the
transduction algorithm is applied to test data.

Language Allowed pairings Simple
accuracy

Translation
accuracy

e2s 1:0, 1:1 69.0 70.6

e2s 1:1, 1:2 67.8 69.8

e2s (*) 1:0, 1:1, 1:2 75.4 77.3

e2s 1:0, 1:1, 2:1, 1:2 74.3 76.4

e2j (*) 1:0, 1:1 63.6 67.5

e2j 1:1, 1:2 55.1 61.2

e2j 1:0, 1:1, 1:2 60.0 63.6

e2j 1:0, 1:1, 4-grams 60.3 64.5

Table 3: Effect of different choices of multi-word pairing sizes.

Table 3 shows the effect of allowing different lengths of phrasal
pairings. For example, the notation “2:1” means pairings of
length 2 in the source and length 1 in the target. In addition, the
pairing type “4-grams” corresponds to all aligned substrings of
at most 4 words that occurred at least 5 times in the word-based
alignment. The best performing pairing choices appear to be the
simplest that can provide the required string length divergence
for the language pair in question. The best choice of multi-word
pairings for each language is shown with an asterisk (*) in the
table. These were the choices used in Tables  1 and 2.

5. CONCLUDING REMARKS

We have described a method for learning a head transduction
model from examples by constructing weighted head transducers
from optimal hierarchical alignments of the examples. We have
applied the method to a language pair, English-Spanish, with
limited re-ordering, as well as to English-Japanese, which
requires substantial re-ordering. The method appears to be
suitable for spontaneous spoken language, at least in limited
domains. From the experiments reported here, our tentative
conclusion on the use of multi-word pairings is that the best
choice of pairing size is the smallest (simplest) that can model
the size divergence between the two languages.
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