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ABSTRACT

We describe a method for automatically learning head-
transducer models of trandation from examples consisting of
transcribed spoken utterances and their trandations. The method
proceeds by first searching for a hierarchical alignment
(specifically a synchronized dependency tree) of each training
example. The aignments produced are optimal with respect to a
cost function that takes into account co-occurrence statistics and
the recursive decomposition of the example into aligned
substrings. A probabilistic head-transducer model is then
constructed from the alignments.

We report results of applying the method to English-to-Spanish
trandation in the domain of air travel information and English-
to-Japanese trandation in the domain of telephone operator
assistance. We also report on a variation on this model-
construction method in which multi-word pairings are used in
the computation of the hierarchica alignments and head
transducer models.

1. INTRODUCTION

Head-transducer trandation models [3] are collections of
weighted middle-out finite state transducers applied
hierarchically in the style of recursive transition networks.
Unlike the work of Brown et al.[4],[5], head transducers take
into account the structuring of natural language strings into
phrases. They do not require the very large amounts of training
material necessary for example-based trandation (e.g. [8]). In
contrast to simple finite state models such as those used by Vilar
et al. [9] the number of states does not become extremely large
when faced with languages with large word order differences.
The work reported in [10], which uses an inside-outside type of
training algorithm to learn statistical context-free transduction,
has a similar motivation to the current work, but the models we
describe here, being fully lexical, are more suitable for direct
statistical modeling.

In previous work [1], we showed that the weights of a head
transducer model with hand-coded structure can be trained to
give better performance than a comparable transfer-based
system. We also showed [2] that both the network topology and
parameters of a head transducer translation model can be learned
fully automatically from a bilingual corpus by hypothesizing
head transducers on the basis of a non-hierarchical word
aignment, as we demonstrated for English-to-Spanish
trandation. In this paper, we describe a method for generating
hierarchica aignments on the basis of sourcetarget co-
occurrence statistics, and using these alignments directly in the
generation of head-transducer models.

In Section 2, we define the hierarchical alignments we use as
synchronized dependency trees. We explain the steps of the
training method in Section 3. In section 4, we describe
experiments we have used to evaluate this method for English-
to-Spanish and English-to-Japanese trandation as part of our
research effort on spoken language trandl ation.

2. HIERARCHICAL ALIGNMENTS

Our training method for head-transducer models only requires a

set of training examples. Each example, or “bitext”, consists of a
source language string paired with a target language string. In
our experiments, the bitexts are transcriptions of spoken English
utterances paired with their translations into Spanish or
Japanese.

A hierarchical alignment consists of three mappings: an
alignment mappind from source wordsv to target word$(w),

a source head-mapmapping source dependent wovdso their
headsg(w) in the source string, and a target head-rhap
mapping dependent target wondgo their head word&(v) in

the target string. An example hierarchical alignment is shown in
Figure 1.
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SHOW ME NONSTOP FLIGHTS TO BOSTON
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MUESTREME LOS VUELOS SIN ESCALAS A BOSTON
h \y w

Figure 1: A hierarchical alignment showing the source
head mapping, alignment mappind, and target head
mappingh.

Under a hierarchical alignment, the source and target strings of a
bitext are decomposed around a “head” wardh the source
string and a corresponding target translafipm) in the target
string, as shown in Figure 2. The decomposition is recursive in
that the substring to the left of (the “left substring”) is
decomposed around a left head ward and the substring to the
right of w (the “right substring”) is decomposed around a right
head wordw,. This process of decomposition continues for each
left and right substring until it only contains a single word.

The alignment corresponds to synchronized dependency trees if:

1. For any two distinct worda/, andw, in the sourcef(w,) is
distinct fromf(w.,).

2. The image underf of each left substring in the
decomposition is a contiguous segment of the target string.



3. The image under f of each right substring in the ‘

decomposition is a contiguous segment of the target string.
4. Whenever w is digned with v, then g(w) is aligned with ‘)‘é<>

(V). that s, f(g(w)) = h(f(w). L fw) | )| )

3. TRAINING METHOD

Figure 2: Decomposing source and target strings around
The training method has four stages: (i) Compute co-occurrence heads w and f(w)
statistics from the training data. (ii) Search for an optimal
hierarchical aignment (specifically, a synchronized dependency
tree) for each hitext. (iii) Record hypothesized head-transducer
transitions which can generate the synchronized dependency
trees. (vi) Compute a maximum-likelihood head-transducer  Head transduction models consists of a collection of head
model from the transition counts. transducers; the purpose of a particular transducer is to translate

P a specific source word into a target words, and further to

31 CompUte pairing costs translate the pair of sequences of dependent words to the left and
For each source word in the dataset, assign a cost, the right of w to sequences of dependents to the left and rigt of
“translation pairing costt(w,v) for possible translations into the When applied recursively, a set of such transducers effects a
target language. These translations of the source word may hierarchical transduction of the source string into the target
zero, one, or several target language words. The assignmensiing.

ranslation irin ffectivel istical bilingual, .. . . .
t_a slation - pairing costs _(e eclively - a _stgt stical b gu%’-\ distinguishing property of head transducers, as compared to
dictionary) may be done using various statistical measures. ur D e )

standard’ finite state transducers is that they perform a

preferred choice of statistical measure for assigning the costs’Is . ) , ) . .
the so-calledPcorrelation measure ([6]). We apply this statistictramSOIuCtlon outwards from a ‘head’ word in the input string
rather than by traversing the input string from left to right. A

to_co-occurrence of the source word with all its pOSSiblﬁe d transducer for translating source wartb target wordv
translations in the dataset examples. We have found that, at least 9 9

for our data, this measure leads to better performance than é)é::- ists of a set of statggw:v) g,(w:v)... and transitions of the
use of the log probabilities of target subsequences given source -

words (cf [4]). (@w:v), g(wev), Wy, vy, @, B)

In addition to the correlation measure, the cost for an alignmeghere the transition is from state g(w:v) to state qj(w:v), reading
includes a distance-measure component that penalizes pairifigs next source dependent w, & position a relative to w and
in which the source subsequence and target subsequence argrifing a target dependent v, a position S relative to v.
very different positions in their respective sentences. Positions left of a head (in the source or target) are indicated

. . . with negative integers, while those right of the head are
3.2 Compute hierarchical alignment indicated with positive integers.

3.3 Record transducer fragments

For each bitext there are several possible hierarchical NONSTOP:SIN ESCALAS / BOSTON:BOSTON
alignments. We wish to find such an alignment that respects the \__/ 141 / 142 i 4
co-occurrence statistics of bitexts as well as the phrasal structure

implicit in the source and target strings. For this purpose \ o

define a cost function on hierarchical alignments. The c¢ Figure3: Dependent transitions generated for source and
function is the sum of three terms. The first term is the total t@g€t headsw = FLIGHTS and f(w)=LOS VUELOS

all the translation pairing costéw, f(w)) of each source wond

and its translatiorf(w) in the alignment. The second term is . »
proportional to the distance in the source string betweel'e construction of head-transducer states and transitions from
dependentsw, and their headg(w,), and the third term is aignments is described in [2). We illustrate this with an

proportional to the distance in the target string between targ@@mplein Figure 3. The figure shows the immediate dependent
dependent wordg, and their heads(v,). transitions generated for head words flights and los vuelosfrom

the hierarchical aignment in Figure 1. This corresponds to the
The hierarchical alignment which minimizes this cost function isonfiguration shown in Figure 2, with source dependents to the
computed using a dynamic programming procedure. In thieft and right, and two target dependentsto the right.
procedure, the pairing costs are first retrieved for each possible
source-target pair allowed by the example. Adjacent sour&4 Build head-transduction model
substrings are then combined to determine the lowest cost
subalignments for successively larger substrings of the bitekhe head transducer models we use in the present work include
satisfying the constraints in Section 2. The successively largéframeters for the probability of choosing a target word v to
substrings eventually span the entire source string, yielding tHénslate asource word w, that is, the probability
optimal hierarchical aligment for the bitext. P(q(w:v) | W)




of choosing an initial head transducer state g(w:v) given w. The
model aso includes the transition event probabilities for
generating source and target dependents of w and v at positions
ain the source and S in the target:

P((W:v), Wy, Vg, @, B G W:V)).

Maximum-likelihood estimates of these probabilities are
computed from the counts for hypothesized states and transitions
constructed from the hierarchical aignments. When a model is
applied to trandate a source sentence, the chosen derivation of
the target string is the derivation that maximizes the product of
the above transducer event probabilities.

4. EXPERIMENTS
4.1 Evaluation Method

In order to be able to reduce the time required to carry out
training-evaluation experiments, we have chosen two simple,
string-based  evaluation metrics that can be calculated
automatically. These metrics, simple accuracy and translation
accuracy, are used to compare the target string produced by the
system against a reference human trandation from held-out data.

Smple accuracy is computed by first finding a transformation of
one string into another that minimizes the total weight of
insertions, deletions and substitutions. (We use the same weights
for these operations as in the NIST ASR evaluation software
[7].) Trandation accuracy includes trangpositions (i.e.
movement) of words as well as insertions, deletions, and
subgtitutions. We regard the latter measure as more appropriate
for evauation of trandation systems because the simple metric
would count a transposition as two errors. an insertion plus a
deletion. (This issue does not arise for speech recognizers
because these systems do not normaly make transposition
errors.) If we write | for the number of insertions, D for
deletions, S for substitutions, T for transpositions, and R for
number of words in the reference trandation string, we can
express the metrics as follows:

simple accuracy = 1 — (I+D+S)/R
trandation accuracy = 1 — (I+D+S+T)/R

Since a transposition corresponds to an insertion and a deletion,
the values of | and D will be different in the expressions for
computing the two accuracy metrics.

For Spanish, the units for string operations in the evauation
metrics are words, whereas for Japanese they are Japanese
characters.

4.2 English-to-Spanish

The training and test data for the English-to-Spanish
experiments were taken from a set of transcribed utterances from
the air travel information system (ATIS) corpus together with a
trandation of each utterance to Spanish. An utterance is
typically a single sentence but is sometimes more than one
sentence spoken in sequence. Alignment search and transduction
training was carried out only on bitexts with sentences up to

length 20, atotal of 13966 training bitexts. The test set consisted
of 336 held-out bitexts. Table 1 shows the word accuracy
percentages (see Section 4.1) for the trained mode, €2s, and a
correlation-based word-for-word baseline, sww, against the
original held-out translations at various source sentence lengths.

Len. <5 <10 <15 <20 All
Sww 44.8/46.0 46.2/48.0 46.6/48.2 45.2/46.8 44.8/46.4
€2s 76.2/78.2 786/809 78.7/80.4 76.4/783 75.4/77.3

Table 1: Simple accuracy/Translation accuracy (percent) for the
trained English-to-Spanish model (e2s) against the word-for-
word baseline (sww).

4.3 English-to-Japanese

The training and test data for the English-to-Japanese
experiments was a set of transcribed utterances of telephone
service customers talking to AT& T operators. These utterances,
collected from real customer-operator interactions, tend to

include fragmented language, restarts, etc. The training set was
restricted to those with at most 20 English words, giving 11490
bitexts. The test set, without a length restriction, comprised 621
held-out bitexts. In the Japanese text, we introduce “word”
boundaries that are convenient for the training process. These
word boundaries are parasitic on the word boundaries in the
English transcriptions: the translators are asked to insert such a
word boundary between any two Japanese characters that are
taken to have arisen from the translation of distinct English
words. This results in bitexts in which the number of multi-
character Japanese “words” is at most the number of English
words. However, as noted above, evaluation of the Japanese
output is done with Japanese characters, i.e. with the Japanese
text in its natural format. Tabl2 shows the Japanese character
accuracy percentages for the trained English-to-Japanese model,
€2j,and a correlation-based word-for-word baseljnay.

Len. <5 <10 <15 <20 All

jww 70.9/74.6 42.5/49.2 32.1/38.7 28.7/35.8 28.7/35.8

e2j 88.9/89.0 76.0/78.0 65.1/68.7 63.6/67.5 63.6/67.5

Table 2: Simple accuracy/Translation accuracy as percentages
of Japanese characters, for the trained English-to-Japanese
model €2j) and the word-for-word baselinpaw).

5. MULTI-WORD PAIRINGS

We have so far discussed the primitive pairings for bitext
alignments as simple pairs of source and target werds)dv.

In this section, we consider the effect of using phrasal pairings,
in whichw andv are generalized so they can be short substrings
of the source and target strings. Examples of such multi-word
pairs are “SHOW ME” and “SIN ESCALAS” in Figure 1. The
cost for such pairings still uses the sa@fstatistic, now taking

the observations to be the co-occurrences of the substrings in the



training bitexts. However, in order that these costs can be
comparable to the costs for simple pairings, they are multiplied
by the number of words in the source substring of the pairing. 1

The use of phrasal pairings does not require any fundamental

changes to the hierarchical aignment dynamic programming
algorithm, which now produces dependency trees with heads

that can be multi-word sequences. In the transducer construction

phase of the training method, the least common word in a source 2.
multi-word sequence is taken to be the “real” head word, and a
chain of transitions is constructed to transduce the other
elements of the multi-word sequence. Thus the final head-
transducer still only deals with single word units, and there is no
need for a separate phrase-identification phase when the 3
transduction algorithm is applied to test data. '

Language Allowed pairings Simple Translation 4.
accuracy accuracy

ezs 1.0, 1:1 69.0 70.6

e2s 1:1,1:2 67.8 69.8 5.

e2s (¥) 1.0, 1:1, 1.2 75.4 77.3

ez2s 1.0, 1:1, 2:1, 1:2 74.3 76.4

e2j (%) 1:0, 1:1 63.6 67.5 6.

e2j 1:1,1:2 55.1 61.2

e2] 1.0, 1:1, 1:2 60.0 63.6

e2j 1.0, 1:1, 4-grams 60.3 64.5 7.

Table 3: Effect of different choices of multi-word pairing sizes.

Table 3 shows the effect of allowing different lengths of phrasal
pairings. For example, the notation “2:1” means pairings of
length 2 in the source and length 1 in the target. In addition, the
pairing type “4-grams” corresponds to all aligned substrings of

at most 4 words that occurred at least 5 times in the word-based
alignment. The best performing pairing choices appear to be the
simplest that can provide the required string length divergence o
for the language pair in question. The best choice of multi-word
pairings for each language is shown with an asterisk (*) in the
table. These were the choices used in Tatllaad?2.

5. CONCLUDING REMARKS
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We have described a method for learning a head transduction
model from examples by constructing weighted head transducers
from optimal hierarchical alignments of the examples. We have
applied the method to a language pair, English-Spanish, with
limited re-ordering, as well as to English-Japanese, which
requires substantial re-ordering. The method appears to be
suitable for spontaneous spoken language, at least in limited
domains. From the experiments reported here, our tentative
conclusion on the use of multi-word pairings is that the best
choice of pairing size is the smallest (simplest) that can model
the size divergence between the two languages.
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