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ABSTRACT

This paper presents a neural network inspired approach to
speaker recognition using speaker models constructed from full
data sets. A similarity measure between data sets is used for
text-independent speaker identification and verification. In
order to reduce the computational effort in calculating the
similarity measure, a fuzzy Vector Quantisation procedure is
applied. This method has previously been successfully applied
to a database of 108 Australian English speakers [1].

The purpose of this paper is to apply this method to a larger
benchmark database of 630 speakers (TIMIT Database). Using
the full 630-speaker database, an accuracy of 98.2% (one test
sentence) and 99.7% (two test sentences) was achieved for text-
independent speaker identification. On a 462-speaker subset of
the database a 98.5% successful acceptance and 96.9%
successful rejection rate for text-independent speaker
verification was achieved.

1. INTRODUCTION

There has been great interest in the area of Automatic Speech
Processing over recent years, and many different methods have
been used for speaker recognition, for example Hidden Markov
Models (HMM), Gaussian Mixture Models (GMM), Vector
Quantisation and Artificial Neural Networks (ANNs) [2- 4].

There are many applications for speaker recognition, including
telephone banking and security control for access to restricted
systems. An application which has recently been proposed
allows a verified speaker to gain access to a protected WWW
page [5].

This paper investigates models created from complete data sets
constructed from 12 mel-frequency cepstral coefficients (mfcc)
of the speech signal. A fuzzy Vector Quantisation (VQ)
approach is used to reduce the computational complexity of
calculating the similarity between a speaker model and an
utterance.

This method has been demonstrated to achieve an accuracy of
100% for text independent speaker identification, a 100%
successful acceptance and 99.81% successful rejection rate for
text-independent speaker verification on a set of 108 speakers
from the ANDOSL database [1].

In order to allow a comparison with results in the literature [6,
7] and to investigate the performance of this approach on a
larger database, this method was applied to the TIMIT Database

[8] - a large benchmark database widely used for speaker
recognition systems.

2. EXPERIMENTAL SET-UP

2.1. The TIMIT  Database

The TIMIT Database contains 10 sentences from each of 630
speakers (438 males and 192 females). The text corpus consists
of three different types of sentences: dialect sentences (sa
sentences), phonetically compact sentences (sx sentences), and
phonetically diverse sentences (si sentences). The dialect
sentences are spoken by all speakers, whereas the other
sentences are different for each speaker. The arrangement of the
speech data for training and testing was chosen to provide a
comparison with the work done by Reynolds [6].

The database is divided into two sections, a “test” section and a
“train” section, containing 168 and 462 speakers respectively.
These sub-sections were used to divide the database into
different sets of speakers to investigate the effect of the number
of speakers on accuracy.

2.2. Pre-Processing of Speech Data

The speech data (utterances) were sampled at a rate of 20kHz,
parameterised by 12 mel-frequency cepstral coefficients (mfcc)
to produce a series of 12-dimensional data vectors. The
sampling was performed using a Hamming window of 16-msec
duration and 5-msec step-size. The mfcc spectrum was pre-
emphasised by a filter coefficient of 0.97. Silence detection was
performed by cutting frames which are less than a threshold of
0.1 of the normalised log energy, and removes any noise from
the speech data.

3. METHOD

3.1. Speaker Model Construction

Figure 1 provides an overview of the procedure used to
construct the speaker models:
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Figure 1: Constructing models from the speech data



 “The best model for a data set is the data set” [1]
Using this concept, models were constructed for each speaker
within the 12-dimensional mfcc space from the full data set,
with no reduction in the input data prior to constructing the
speaker models. This ensures that the model contains enough
data vectors to capture the characteristic features of the speaker
within the local distribution of data vectors for the speaker [1].
Many methods reduce the complexity of the data set prior to
classification, but we argue that reducing the complexity of the
data set incurs a loss of information which is relevant for a
classification task.

VQ is an approach used for information compression, and is
widely used in speech and image compression to reduce the
complexity of the data set [9]. The fuzzy VQ procedure used in
this approach is obtained from a minimal free energy criterion
[10, 11] and the underlying update rule belongs to a class of co-
operative competitive learning rules [12]. This particular VQ
procedure has been chosen because of its excellent convergence
properties, and the representation properties of the data set by
the codebook are well suited to this problem.

VQ is used to map the speaker model X⊂ℜ12 with X ≡
{ xi∈ℜ12|i=1,..,Nx}, where Nx is the number of data vectors in the
speaker model X, onto a finite set of N (Nx>>N) codebook
vectors wr∈W{ wr∈ℜ12|r=1,..,N}. Each data vector x∈X is
assigned to the codebook vector wr′∈W by the condition:
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Simulated annealing is used to find the optimal positions for the
codebook vectors in the feature space. A Voronoi tessellation is
used to allocate equal numbers of data vectors to each Voronoi
Cell. The combination of the codebook vectors and the data
distribution uniquely describe the speaker’s subspace, and form
a model for the speaker (Figure 2).

Figure 2: The model for a speaker.

3.2. Feature Extraction

A speaker’s utterance Y follows a trajectory through the
speaker’s subspace X (Figure 2), where the utterance subspace
is Y ≡ {y k∈ℜ12|k = 1,…,Ny}. Feature extraction is performed by
calculating a similarity measure between the data set X and the
test utterance Y called the mean next neighbour distance dnn

with
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where x'(y) is the next neighbour in the speaker’s subspace X to
the data vector y in the test utterance. An average is taken over
the Ny data vectors in Y. Here a high similarity measure
corresponds to a small mean next neighbour distance, dnn.

The search for the next neighbour using equation (2) is
computationally expensive. How do we make the next
neighbour search more efficient without losing information
which may be relevant for classification? We perform a
hierarchical search to reduce the computational complexity of
the feature extraction procedure.

A large number of data vectors far away from y may be
excluded from the next neighbour search, allowing for a
reduced search. For each data vector y, the next codebook
vector wr′ is obtained using equation (1), then the Voronoi Cell
of wr′ is searched for the next neighbour ( )yx ′~  in the speaker’s

model. This corresponds to a slightly different value for the
mean next neighbour distance:
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which allows for a computation saving of approximately N [1].
This distance measure implements a Manhattan metric rather
than an Euclidean distance measure to further reduce the

number of numerical operations. The values for dnn and nnd
~

may differ slightly, for example when x′(y) is not in the subset

of wr′, when y is on the border of a Voronoi cell, nnd
~

 will be
an over-estimation of the mean next neighbour distance.

3.3. Set-Up of Identification and
Verification Experiments

Eight sentences from each speaker (2 sa, 3 si and 3 sx
sentences) were used to create a model for the speaker. The
speaker models contain the complete set of mfcc vectors
extracted from the sentences and 10 codebook vectors. The test
sentences for identification and verification were always
different from the sentences in the speaker’s model to ensure
text-independency. Both identification and verification
experiments were carried out on sets of all male (M), all female
(F), and mixed (M+F) speaker sets of varying size.

The two remaining sx sentences from each speaker were used in
identification testing. In verification, a threshold value was set
so that the identity claim could be accepted or rejected. In order
to set this threshold, a “training” stage was performed, using a
set of 10 background speakers randomly selected from the
speaker set. These 10 background speakers were different for
each speaker, and the remaining speakers in the set were used in
the test set as imposters.

The first sx sentence from the true and background speakers
were used to set the threshold where the number of false
acceptances (acceptance of an imposter) equals the number of
false rejections (rejection of a true speaker). The second sx
sentence from the true and imposter speakers were used to test



the threshold. An identity claim was accepted if the dnn value
falls below the threshold and was rejected otherwise.

4. RESULTS

4.1. Speaker Identification

Table 1 shows the results for speaker identification using the
two sx sentences from each speaker individually.

Speaker
Set

# speakers # incorrect Correct %

M 112 0 100.00
F 56 1 99.11
M+F 168 1 99.70

M 326 12 98.16
F 136 5 98.16
M+F 462 17 98.16

M 438 16 98.17
F 192 7 98.18
M+F 630 23 98.17

Table 1: Identification results for one sentence

Four of the incorrect speaker identifications in the male 326-
speaker set were caused by the same very short utterance which
contained an average of only 153 data vectors (corresponding to
0.75 seconds of speech). It was found that the shorter sentences
had a higher incorrect identification rate.

Two sentences were concatenated for the second set of
identification tests to explore the effect of a longer utterance
length on identification accuracy (Table 2).

Speaker
Set

# speakers # incorrect Correct  %

M 112 0 100.00
F 56 0 100.00
M+F 168 0 100.00

M 326 1 99.69
F 136 1 99.26
M+F 462 2 99.57

M 438 1 99.77
F 192 1 99.48
M+F 630 2 99.68

Table 2: Identification results for two sentences

As the number of speakers was increased from 462 to 630
speakers, the identification accuracy increased for both the one
sentence and two sentence experiments. Dersch [1] and
Reynolds [6] found that females achieve a lower speaker
identification accuracy than males. However our results show
that for the single sentence tests the female accuracy was
actually higher, but using the longer utterance length, the
accuracy was distinctly lower for females.

The rank of the true speaker is a performance measure used to
indicate how accurately the true speaker was correctly

identified. If the speaker is correctly identified they are assigned
a rank of one, if not, the speaker is assigned a rank according to
the number of speakers who had a smaller dnn value than them.
Table 3 shows that the rank increases with an increase in the
number of speakers. There is more scope for incorrect
identification in a larger group of speakers. The rank is much
smaller for the longer utterance length, which is to be expected,
since a longer utterance provides greater opportunity to capture
the characteristic features of a speaker.

speaker set # speakers 1 sentence 2 sentences

M 112 1.000 1.000

F 56 1.009 1.000

M+F 168 1.003 1.000

M 326 1.044 1.003

F 136 1.037 1.007

M+F 462 1.043 1.004

M 438 1.048 1.006

F 192 1.034 1.007

M+F 630 1.044 1.006

Table 3: Mean rank of true speaker for one and two sentences

Another performance measurement to evaluate the quality of
results measures the relative distance between the smallest and
the second smallest mean next neighbour distances. Using one
sentence for the 168 speaker subset, we found a value of 12.8%,
and for the 462 speaker subset, 10.1%. This value is used as a
confidence measure, and a larger percentage indicates that the
correct identification is more reliable. It is interesting to note
that for the incorrect utterance identifications, we found a very
small value of 0.64% indicating that the incorrect identification
was caused by a speaker who was very similar to the true
speaker.

4.2. Speaker Verification

Table 4 shows the results for speaker verification, and includes
the number of true and imposter speakers within each group.

Speaker
Set

#true #imp Correct
Accept %

Correct
Reject %

M 112 11312 98.2 98.0
F 56 2520 91.1 98.5
M+F 168 26376 99.4 97.7

M 326 102690 98.2 97.2
F 136 17000 94.9 95.4
M+F 462 208362 98.5 96.9

Table 4: Verification results using random background speaker
selection

Both in the male and mixed speaker groups, the correct
acceptance rate is higher than the correct rejection rate. The
correct acceptance and rejection rates decreased with an
increase in speaker set size, with the exception of the female set.
Generally we found that the female set results were much lower



than the other sets, and it is unclear why this is so, but it agrees
with other results in the literature [6, 13].

5. SUMMARY AND CONCLUSIONS

The values obtained for the mean next neighbour distance,

nnd
~

using equation (3), were found by searching only one
Voronoi Cell, therefore achieving the highest possible
computational saving with this method. This may result in an
over-estimation in the calculations for the mean next neighbour
distance. Dersch [13] found that an increased search to
surrounding Voronoi Cells achieves better results, but this
increases the complexity of the search. So a trade-off exists
between the accuracy of the method and the computational
complexity of the next neighbour search.

The time required to verify an identity claim is the amount of
time required to calculate the similarity measure for the test
utterance on the claimed speaker’s model, and can be carried
out in real time. Identification on the other hand, requires that
the test utterance be compared with every speaker model in the
database. It is a linear function of the number of speaker models
and can be very time consuming for large databases. The mean
amount of space required to store each speaker model is 376.9
kB, and the time required to train a speaker model is much
faster than any other approach.

It was important to follow the set-up used in [6] to allow for a
direct comparison of the results. Our method has been shown to
give 98.2% accuracy for one sentence speaker identification on
the full 630 speaker database. An increase to 99.7% accuracy
was achieved by concatenating two sentences from each
speaker. These results are comparable to the results achieved by
Reynolds: 99.5% for speaker identification for the full 630
speaker database.

Background speaker selection methods used for verification in
this study differ from those of Reynolds [6]. Our eer result is
2.3%, compared with 0.24% achieved by Reynolds. The results
achieved by Fakotakis et al. [7] were a 98.09% identification
accuracy and an eer of 1.72% for verification. Although the
same arrangement of the database was not used, it is still useful
to compare results with those achieved using the TIMIT
Database.

As a result it has been shown that this method achieves very
good performance on a large benchmark database. In both
speaker identification and verification, the results confirm
previous results obtained on a smaller database of 108
Australian speakers [1]. It would be interesting to evaluate how
this new approach performs on noisy speech, eg telephone
speech or speech with background office noise.

The current method does not disadvantage the utterance if the
path is not aligned with the speaker’s model. A new feature is
being investigated which exploits the dynamic properties of the
utterance, incorporating the time sequence of the data vectors.
Investigation of this feature will  be the subject of further work
[14].
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