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ABSTRACT
In this paper we describe the techniques and methodology
developed for automatic labeling of segmental and prosodic
information for the Mandarin speech database. There are two
major procedures. First, the text is converted into the phonetic
network of possible pronunciations, and this network is aligned
with the speech data by recognition processes. Secondly, many
acoustic prosodic features are derived and the break indices are
labeled with these features by decision trees. For the segmental
labeling, 96.5% of automatically determined segment
boundaries are accurate within a range of 20 ms. For the
prosodic labeling, 84.9% of the automatic labeled break indices
are the same with the manual labeled one.

1. INTRODUCTION

It is now widely recognized that progress in speech technology
is dependent to a considerable extent on the quality of the
speech database that are available. The coverage of vocabulary,
speakers, recording conditions, etc., is crucial to the success of
the system. However, all these qualities can be undermined if
the reliability of their labeling is suspect. The purpose of this
research is to develop a set of models and tools for the
automatic labeling of speech corpora. The corpora are used for
training a speech synthesis system, as well as providing source
units for concatenative synthesis. Stochastic models are trained
to predict timing and pitch contours from the corpora. If the
corpora are not accurately labeled, then the prediction of the
models and the synthesis quality will degrade considerably.
This labeling must closely reflect the speech as it was actually
produced, and should be based on acoustic rather than on
perceptual features. Thus automatic labeling may be essential
for this purpose. Two kinds of automatic labeling are studied in
this paper, the segmental labeling and the prosodic labeling.

Most of the automatic segmental labeling systems use the
HMM-based recognizer to do a forced alignment between the
speech data and the phonetic transcription[1][2]. The two major
problems are:

1.  have no phonetic transcription or the transcription is
incorrect.

2.  have no initial segmentation for the training of HMM
models

For the first problem we have a program to generate the
possible pronunciation networks from the accompanying
orthographic transcription, and use the HMM to recognize the

real phonetic realizations. For the second problem, we use a SI
HMM to do the initial segmentation, and the boundaries are
corrected with a set of boundary correction rules. These can
make a more reliable result than the traditional procedures.

Not like the segmental labeling, there is less literature for the
prosodic labeling, especially for the automatic prosodic labeling.
Moreover, most of the publications on this topic are focused on
English which in very different from Mandarin in nature[3][4].
In this paper, we use the decision tree to classify the boundary.
This is similar to the method described in[3] but we use a
hierarchical multiple pass procedure in stead of the Viterbi
process. The feature set is also with many differences. The
major difficulty encountered is the coupled interaction between
the lexical tonal system and the prosodic system. We try to de-
couple these features with some normalization procedures.
Although the results cannot be directly compare with the
previous study for English, this paper is a good start point for
the research of automatic prosodic labeling for Mandarin.

The experimental corpus is described in section 2. The
description of the segmental labeling and the prosodic labeling
is in section 3 and 4. The last section is the discussions.

2. EXPERIMENTAL CORPUS

2.1 Corpus Design

In Mandarin, syllable is a very important unit. Each character is
pronounced as a syllable. There are only about 400 syllables if
the tonal difference is neglected. An INITIAL/FINAL format
can describe the composition of a Mandarin syllable. INITIAL
is the initial consonant and FINAL is the vowel (or diphthong)
part with an optional medial or a nasal ending. In theory, there
are about 2000 FINAL-INITIAL and FINAL-FINAL (No
INITIAL in the latter syllable) patterns in the disyllabic
junctures. The speech corpus is designed to cover most of these
combinations[5]. Moreover, the corpus is organized as 599
short paragraphs so as to cover many prosodic variations in
reading. Six professional speakers read the corpus at a normal
speaking rate in a sound proof room. If there are hesitations or
mistakes, the speaker will be asked to read the sentence again
until each character is correctly pronounced. This can reduce
the errors for further segmentation and labeling.

2.2 Corpus Labeling

The corpus is first segmental labeled by a trained transcriber.
The smallest units are the INITIAL and FINAL. In the later on
prosodic labeling, phrasing and emphasis are the prime
determinants. The former refers to the groupings of words in an



utterance, and the latter describes the greater perceived strength
or focus of certain units. The phrasing is represented by break
indices. The break index is labeled for each syllabic boundary
instead of word boundary because the lack of common
agreement on word boundaries. We defined six possible break
related boundaries corresponding to six break indices; our scale
therefore 0 to 5. The defined break indices correspond to the
following boundaries: reduced syllabic boundary (0), normal
syllabic boundary (1), minor-phrase boundary (2), major-phrase
boundary (3), breath group boundary (4), and prosodic group
boundary (5). The speech segments between the break indices
than form a set of prosodic units accordingly, namely, minor
prosodic phrase, major prosodic phrase, breath group and
prosodic group[6].

The other labeled parameter is the level of emphasis in an
utterance. It is subject to the transcriber to decide the emphasis
level of whatever prosodic units when they fell the emphasis.
The level is from 0 to 3 corresponding to the following levels:
reduced (0), normal(1), moderate (2) and strong (3). In the
initial study, the automatic labeling of emphasis is not
described in this paper.

3. AUTOMATIC SEGMENTAL
LABELING

3.1 Training and Alignment
For the segmental labeling, the orthographic transcription of the
speech data is used as the input. The possible pronunciations
for the words in each sentence are derived from a text analysis
module, including establishing a set of possible pronunciations
for each word, and transcribing the results into the HTK’s net
file format. These net files include the homographs and the
pronunciation variations, for examples: (� chong2,layers and
zhong4,heavy), (� feng1 or fong1). A Viterbi process is then
performed to recognize and align the units in the speech data
based on the net. The units of the HMMs are context
independent INITIALs and FINALs. The INITIAL has 3 states
and the FINAL has 5 states. The feature vectors include 12
dimensions of MFCC, 1 dimension of RMS power and their
differential values. The frame rate is set to 5ms to increase the
precision of the segmentation. The traditional training
procedure for HTK is illustrated in Figure 1. The alignment
results showed that the HMMs trained with this procedure have
some bias for the position of boundaries. The INITIALs are too
long in most of the cases. The trained model may be fine for the
recognition, but the alignment is not satisfactory and required
further manual adjustments. During the manual correction of
the alignment results, we found that most of the errors can be
classified and adjusted with some phonetic rules. We
implement an algorithm to post-process the output label files
with these rules. The adjusted results can be applied to adapt
the parameters of the HMMs. To increase the reliability, we can
iterative train the models. This procedure is also illustrated in
Fig. 1. The input is the speech signal and its transcription net
file; the output is the INITIAL/FINAL sequence with the
associated position.
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 Figure 1. Block diagrams of the two kinds of training
and segmentation process

For the traditional training processing, the Speaker Independent
(SI) HMMs performs a rough segmentation for the initial
training of the Speaker Dependent (SD) HMMs. The
parameters of the SD HMMs can be further re-estimated with
an embedded Forward-Backward algorithm (HERest). The
Viterbi process then outputs the final segmentation with these
HMMs. In our case, the re-estimation of HMMs is replaced by
an iterative Viterbi, correction and training process. Additional
boundary correction rules are applied for the correction. These
prior described rules are based on the knowledge from the
observations in human correction procedures. This correction is
done by searching for the acoustic features matching to the
phonetic properties of the units in the local vicinity of the
Viterbi alignment boundaries. The features include RMS power,
voicing probability and energy bands derived from FFT. The
window sizes are varied from 5ms to 20ms according to the
features and phonetic types of units. The segmental units are
classified into 7 phonetic types, silence, nasal, liquid, fricative,
plosive, affricate and vowel. Different rules and features are
used for the different combinations of phonetic types, for
examples: nasal+vowel, vowel+fricativc, etc. If the case is a
sil+plosive, a 5ms window of RMS power will be applied to
locate the plosive because there is a short burst of energy when
the sound is released. If the specified acoustic features are not
found in that area, the boundary is left no change. The adjusted
boundaries are further processed to update the parameters of
the SD HMMs. These procedures are recursively performed
until the average alternation of boundaries is under a threshold.

3.2 Experimental Results
To evaluate the effects of the whole process, a set of manual
labeled data is set as the reference. The errors are calculated as
the difference between the aligned boundaries and the reference
boundaries. The segmentation rate is defined as the percentage
of errors within 10ms and 20ms. Without the boundary
correction rules, the mean error of the HMMs is 14.2ms, and
the segmentation rate is 66.3% (91.2%) within 10ms (20ms).
By retraining the HMMs with the boundary correction rules, the
average error of the outputs decreases to 8.3ms, and the
segmentation rate within 10ms (20ms) increases to 78.4%
(96.5%).



 4. AUTOMATIC PROSODIC LABELLING

 4.1 Multiple Pass Labeling

The prosodic labeling task requires mapping a sequence of
feature vectors (mostly derived from the acoustics) to a
sequence of labels. The simplest approach to this problem is to
treat each feature vector as an independent classification
problem, assign a class to it, and move on to the next vector.
This approach is too simplistic and fails to represent the inter-
relationships between the events being labeled (i.e., to take
account of the restrictions that govern the allowable sequences
of the events). In the paper of Wightman and Ostendorf[3],
these constraints are formularized as a Hidden Markov Model.
This is based on a simplified  assumption that the current label
is only dependent on the previous label. In our experience from
manual labeling, the dependency is most on the upper level of
units but not the previous label. Since there is a hierarchical
structure of prosody, we choose to use a multiple pass top-down
procedure for the labeling of break indices. The algorithm
contains two principal components. The feature extraction
component transforms the various sources of information (the
segmental transcription, pitch-tracking results, etc.) into a
time-ordered sequence of feature vectors. Thus, if we wish to
label break indices on syllabic boundaries, we will need to
produce one feature vector for each syllabic boundary. The
feature vectors are then classified using decision trees. Decision
trees were chosen because they provide a graceful means of
handling extremely non-homogeneous features, and the internal
structures can be inspected to gain insight into the profit of the
features. The multiple pass procedure is very simple. We only
spot one kind of break index a time and the sequence is from 5
to 1. The 0 is missing because the reduced syllabic boundary
(B0) does not occurred in this read-speech database.

 4.2 Prosodic Features

Although there are many features used to determine the break
indices, they are all derived from 3 basic acoustic features:
duration, energy and F0. To separate the effect of the segmental
intrinsic properties, all these values should be normalized to the
z-score values. These features are listed in Table 1. One class of
the important features is the temporal information. The
information includes the duration of the upper level unit, and
the distance of the potential boundary from the beginning or end
of the upper level unit. These features are used to take account
of the constraints of speech production. We measure these
features both in seconds and in number of syllables. The feature
F0 reset should also be particularly mentioned. In order to get a
principled representation of the overall shape of the F0 contour
that can suppress the pitch tracking errors. An algorithm  used
to perform the stylization is based on the technique described
in[7]. This algorithm produces a piece-wise linear
representation of the F0 contour. For the boundary between
syllable S1 and S2, the F0 reset is defined as f2-f1, where f2 is the
F0 at the beginning of the FINAL part of S2 and f1 is the F0 at
the end of the FINAL part of S1. Because the value of the F0

reset is mostly depending on the lexical tonal combination of
the adjacent syllables, these values should also be converted to
the z-score according to the tonal patterns.

The features mentioned above are all derived from the acoustic
signals. Additional features could be derived from the
corresponding text transcription. The location of punctuation
mark can be directly copied from the text. It’s very useful for
the spotting of B4 and B5. The word boundary is another
important information that could be derived with a word
identification program. Almost all the syllabic boundary inside
a word is a B1. We only use these two features because we have
no reliable tool for the determination of high level syntactic
information.

Symbols Descriptions Major
Determinant

Eu end of utterance B5
Pd pause duration B1-B5
Dp normalized duration of the

preceding syllable
B1-B3

Df normalized duration of the
following syllable

B1-B3

Dr Df / Dp B1-B3
Ep normalized energy of the

preceding syllable
B1-B3

Ef normalized energy of the
following syllable

B1-B3

Er Ef / Ep B1-B3
Ut/Un total duration or syllables in

upper level unit
B1-B5

Bt/Bn distance (seconds or syllables)
from Beginning of upper level
unit

B1-B5

Et/En distance (seconds or syllables)
from end of upper level unit

B1-B5

Fr normalized F0 reset B1-B5
Fb normalized F0 of the

beginning of the following
syllable

B4-B5

Fe normalized F0 of the ending of
the proceeding syllable

B4-B5

Pm punctuation mark B4-B5
Wb word boundary B1

Table 1. Prosodic features for break indices labeling

 4.3 Experimental Results

The experiments are done with the database of one male
speaker. 399 paragraphs are used for training and 200
paragraphs for testing. There are 6249 syllables and the same
number of labels in the manual labeled test data, because a B5
is labeled at the end of each utterance. Experiment 1 use only
acoustic derived features and experiment 2 use all the features.
Table 2 and 3 are the confusion matrixes for experiment 1 and 2.
The average error rate is 20.3% and 15.1%. We find the
confusion can be effectively decreased with the text derived
features. This implies the transcriber is affected by the text
information and not only use the acoustic information. Although
this is unavoidable, we should try to decrease the influences.



Automatic LabelsManual
Labels B1 B2 B3 B4 B5

Total

B1 3211
(83.2%)

581
(15.0)

65
(1.6%)

0
(0%)

0
(0%)

3857

B2 113
(11.1%)

809
(79.4%)

84
(8.2)

7
(0.7%)

5
(0.5%)

1018

B3 14
(2.2)

71
(11.3%)

487
(77.5%)

35
(5.6%)

21
(3.3%)

628

B4 0
(0%)

3
(0.1%)

48
(13.8)

171
(49.0%)

127
(36.3%)

349

B5 0
(0%)

0
(0%)

17
(4.2)

76
(19%)

304
(76.5%)

397

Total 3338 1464 701 289 457 6249

Table 2. Confusion matrix for break indices labeling
(without text derived features)

Automatic LabelsManual
Labels B1 B2 B3 B4 B5

Total

B1 3466
(89.8%)

378
(9.8%)

13
(0.3%)

0
(0%)

0
(0%)

3857

B2 98
(9.6%)

832
(81.7%)

78
(7.7%)

8
(0.8%)

2
(0.1%)

1018

B3 15
(2.3%)

65
(10.3%)

510
(81.2%)

25
(4.0%)

13
(2.5%)

628

B4 0
(0%)

4
(1.1%)

34
(9.7%)

186
(53.2%)

125
(35.8%)

349

B5 0
(0%)

0
(0%)

12
(3.0%)

72
(18.1%)

313
(78.8%)

397

Total 3579 1279 647 291 453 6249

Table 3. Confusion matrix for break indices labeling
(with text derived features)

5. DISCUSSIONS

In this paper we described the techniques and methodology
developed for automatic labeling of segmental and prosodic
information for the Mandarin speech database. The results in
both the segmental and prosodic labeling are satisfactory in this
stage, but there is still a big problem for the prosodic labeling.
The experiment is a speaker dependent case. We need large
amounts of manual labeled data to train the decision trees.

Although most of the features have been normalized, we still
have no idea it will work for different speaker or not. More
manual labeled data is needed for the further testing. It is also
critical that the algorithms should be extended to handle
spontaneous speech. All the works have been done so far are
focused on read speech. This is because the application is
mainly for speech synthesis. The next step is to adapt the
models for spontaneous speech and increase the applications for
this research.
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