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discriminative spectral information contained in the speech
ABSTRACT utterance, they may each only capture a subset of the available
) ) o ) _information. For example, while the conventional HMM with
An acoustic model is a simplified mathematical representatiqftiple mixture densities is effective in representing the
of acoustic-phonetic information. The simplifying assumptiongersity of the static spectral characteristics, it is ineffective in
inherent to each model entail that it may only be capable @b,y ring dynamic spectral information; likewise, while
capturlng a ce_rtaln aspect_of the available information. AQegment based models improve upon the standard HMM in
effective combination of different types of model shoulderng of captured dynamic information, the inclusion of a

_therefor(_a permit a combined 'qu'el that can Ut'l'ze all thgegmental-level multiple mixture representation may prove
information captured by the individual models. This PaP€fetrimental due to the considerable increase in model

reportg some preliminary research |n combining gertain types &f)mplexity [7]. In other words, it may be assumed that there is
acoustic model for speech agnition. In - particular, we Eﬂo unigue modeling method that encompasses the other

deS|g.ned and implemented a single ,HMM framework, ,Wh'C ethods in terms of the amount of information being captured.
combines a segment-based modeling technique with the

standard HMM technique. The recognition experiments, bas&hould this assumption be true, then it is possible that a union
on a speaker-independent E-set database, have shown thatdhedifferent modeling techniques, with each technique
combined model has the potential of producing a significantlgmphasizing a different aspect of the input information, will
higher performance than the individual models considered iesult in a model that captures more information than any of the
isolation. individual techniques considered in isolation. In order to test
the above hypothesis, we designed and implemented a single
1. INTRODUCTION HMM framework, which combines a segment-based modeling
. . . . . technique with the standard HMM technique. This research is
Comk_"”'”g multiple information sources _plays an 'mpo_rtanéignificant in that it may bring about a significant improvement
role In high performance SPee‘:h agaition. In_ ac_ou_stlc_ in the robustness of currentegeh reognition systems with
_m°de"”9' the extractlor] of dl_fferent levels of d'_scr'm'nat'verelatively little effort. In addition, it is a useful complement to
|nformathn may be achle_ved in three ways: 1) (_jlfferent YP&he current research in multiple-feature approaches, described
of acoustic features, 2) different types of acoustic models, ang ..« as method 1. Both approaches need to be advanced, and

3) the combination of 1) and 2). The recent research eﬁorﬁ?timately in the future they may be combined (i.e. method 3
towards the first method have investigated the calculation al ‘Eove)

combination of multi-scale/multi-band acoustic features within
an HMM [1, 2, 6, 8]. In these systems, each feature stream 2. HMM BASED MULTI-MODEL
represents a different characteristic of the input information. '

The combination of different feature streams has been TECHNIQUE

accomplished by either directly creating an augmented feat“é%rrently the most successful ASR technique is based on

vector .that cons!sts of "’,‘” .the compongnt stregms, YMMSs and their variants. Therefore we focused our research on
alternatively merging the likelihoods associated WEBCh o creation of a single HMM framework, within which various
feature stream.. Such.systems have shown improved robustnﬁmM based techniques may be combined. The standard HMM
over the traditional single feature stream based systems [1,/&.pnique has the advantages that it permits computationally
8]. In this paper we investigate the second method, i.gtective algorithms for training and decoding, and additionally

mode!lng an acoustic signal across multiple modeling oers 5 straightforward extension to multiple mixture
techniques. densities, thereby considerably increasing the power of the

The multi-model approach differs from the multi-featurgModel fo_r _representing the diversity of the static spe_ctral
approach in that it seeks a combination of different types &haracteristics of speech. Howeyer, the standard HMM f_alls to
acoustic model, thereby integrating the capabilities of eacdflequately model the dynamic spectral characteristics of
individual model for capturing discriminative information. TheSPeech, due to the frame independence assumption. During the
proposed research is based on the observation that most curf&it decade,_varlous modified models have beep_oped to
speech reagnition systems are built upon a single modelin@Vercome this problem [7]. Generally, a certain type of
technique, e.g. an HMM or certain type of segment bas&§gment-level probability density is used to replace the initial
model. While these techniques all aim to capture the usefligme-level density, thereby capturing longer-term dynamic



spectral information. We suggest the combination of thstandard HMM, theK-mixture state- observation density is
standard HMM employing a multiple mixture of static densitiegjiven by

with segment-based models, thereby integrating their K

capabllltlgs .for capturing both the static and dynamic spectral bistd(x) - zWikgik(X) 3)
characteristics of speech. &

2.1. A General Structure for the Combined  where g (x) is thek'th mixture component Gaussian amg,
Models the corresponding mixture weight. The IFDHMM represents the
segment-level characteristics by assuming that each acoustic
An HMM framework is employed to accomplish thbowe frame is dependent upon a segment eteding or succeeding
model combination. Specifically, we define the state-dependeftames. Specifically, the statebservation density of the model
observation densities of the combined model as the productisfdefined as [5]
the corresponding densities fromach of the coponent
models, i.e. ) N
b (xa..xn) = Cinin (4xn) @)
b ()= [ 6" (%) () -
m where N defines the length of the conditional segment,
where b™(x ) and by (x ) represent the observation densities ofgi”(x|xf_‘) is a conditional Gau55|ar.1. density capturing the
the mith component model and the combined modeporre.latlon between anql then’th condmgna} framexp , and.
respectively, for state If normalization of (1) is required then Cin iS the corresponding we|ght,' gatlsfy|ng th? constrqlnts
an exponential weighting can be introduce@&ach comonent Cin 2,0 and ZnCip =1 The conditional Gaussmq density
density to balance their combination. Given (1), the IikeIihoo&“nCt'on Gin(XXn) can be shown to have a parametric form [5]

function of the combined HMM can be written as ’
Qin (X|Xn) OexpY2(x—HinXn = Hin)' Uin (X=HinXn = Lin))

p(ojA) = z T, |_| ag s |_| b;“ (o) 2) (5)
S t m

where Ui, is alL-dimensional vector andHj, and Uj, are

both LxL matrices,L being the dimensionality of the frame
vector. Given an observation sequemgethe N conditional
frames associated with each framg i.€. 0y—7(3) , ..., Ot—r(N) »

The model defined by (2) is equivalent to a linear combinatioare defined by a pre-chosen time-lag sequerte, ...,)T(N).

of the component observation likelihood functions in thePositive T(n)'s corresponds to a eceding-frame dependent
logarithmic domain, a method used by some multi-featureystem and negative(n ' corresponds to a sceeding-frame
models for combining likelihoods from different feature streamedependent system. Both models, along with the standard HMM
(e.g. [1, 2, 6]). Of interest is the difference between (2) an@), are combined according to (2) to form the combined model.
those multi-feature methods. In (Bach b™(x ) represents a The combination of both the preceding and succeeding frame
different type of observation density and all th¥(x)’'s are  dependent models has been justified by our previous research in
applied to the same feature streamvhilst in the multi-feature terms of improved performance [3, 4]. Given the non-stationary
methods the same type of density is used for alldfiéx s, ) nature of speech, it is reasonable to assume that for a particular
with each b™(x ) accounting for a different type of featureframe, the succeeding (or preceding) frames contain useful
input. Both methods are common in that their effectivenesiynamic information that may not be encapsulated in the
should depend on there being little correlation between the ergreceding (or succeeding) frames.

patterns that arise from each qmunent likelihood.

where o is a time sequence of observations ahdis the
parameter set of the combined model.

Based on (2), we can write the likelihood function of the
The model structure shown in (2) has the advantage thatcttmbined model as
permits computationally effective training and decoding, one of
the most attractive characteristics of HMMs. In the following _
we show this by implementing (2) using specific examples forp(om - ZHSO ” 58
the b™(x)’s. std ifd ifd
(bg ™ (o) tbg (0t|0t—T(1)-~-0t—T(N))[b5t (0t|0t+T(l)~-~ot+r(N))

2.2. A Specific Combined Model (6)

We chose to combine the standard HMM employing a multiplsubstituting (3) and (4) into (6), after some operator
mixture of Gaussian densities with a segment-based modgianipulation, it can be shown that

namely the inter-frame dependent HMM (IFDHMM). The
IFDHMM embodies a modeling technique that we developed _

0A) = 0,5,Kk,0,v|A 7
earlier as an alternative to the existing techniques for p(|) Zzgzp( K v| ) 0
representing segmental level characteristics [3-5]. For the

in which p(o,s,k,0,v|A) is defined by



by the model. The results shown in Table 1 provide good
evidence that an appropriate modeling of the longer-term
dynamic spectra of sech is at least as important as the
representation accuracy of the instantaneous spectra, achieved
[Wsk, 9sk, (0) [e5n, I, (Ot |°t-r(m)) [€sm 9sm (Ot[0t+7(m))  through the use of multiple mixtures of static densities.

(8)

p(o,s,k,6,v]A) =1y, I_l as_ s
t

and k, 8 and v represent theT-tuples (kg,....K7), Parameter | Accuracy
: . Model )

(M,...ny) and (my,..,m;), respectively, with everyk, (KorN) (%)
defined over (1, ...K), and everyn, and m; defined over (1, K=1 86.3
..., N), assuming that the same number of conditional frames Standard HMM K=3 88.8
are used to model the preceding and succeeding frame K=5 89.6
dependencies. Based on (7), a maximum-likelihood estimate of ith N=2 90.8
the model parameter set can be obtained by an iterative (;'_ZD':MM W('jt d N=3 91.7
maximization of the following auxiliary function preceding frame dependency N=4 92.3
) IFDHMM with mfg 8(1)'2
QA0 4) = p(o, S’K’G’VP‘O)'” p(0.5.K,6,v[A) ©) succeeding frame dependency N:4 L6
S,K,G0\V — .

where A, is an estimate from the previous iteration. ThiSTabIe 1 Recognition performances of the standard HMM and

maximization can be accomplished using the standard forwarJ(lJ_'-_DHMMS' The results are shown as a function of the number of

backward procedure, leading to the computationally effectiy@Ixtures (K) or the num_ber of conditional frames (N) used in
model re-estimation algorithm. each state in the appropriate model.

3. EXPERIMENTS 3.2. Performance of the Combined Models

The experiments are based on a speaker-independent alphabekt]ic binati fthe ab dels has b 4 using th
database (provided by British Telecom Laboratories), fro e combination of the above models has been tested using the

which the highly confusable E-set (b, ¢, d, e, g, p, t and V) @gorithms described in Section 2. Firstly, we examine the

extracted for the experiments. The database contains thr%fgectlveness of the combination of the two IFDHMMs, one

repetitions of each word by a total 134 speakers; the databasemOdel employing preceding frame dependencies and the other

is roughly balanced with respect to age and gender. Among t%cceeding frame dependencies. The results are shown in Table

104 speakers, 52 were designated for training and the other%zas a function of the number of conditional frames used in
for testing. For each word, thenbaut 155 utterances are each corponent model. Compared to Table 1, it can be seen

available for training, and a total of 1219 utterances a at the combined model always produces a higher accuracy

available for testing for all eight words. The speech, sampled n the corresponding component models —operated

20 kHz, was divided into 25.6 ms frames with a consecuti\)gdi"idua”y' This phenomenon has already been reported

frame overlap of 15 ms. Each frame is passed through a filt@}e\’iouSIy [3, 4]. The non-stationary characteristics elesp

bank of 27 band-pass mel-frequency filters, from which 1 ntail that each of the two c@mnent IFDHMMs captures some
MFCCs plus their first order differential parameters arélseful dynamic spectral information that is not contained in the

extracted. A state-tied model topology, using 15 stateszoh other. The combined model utilizes the information found in
word and with the final 9 states tied among all the eight WordQ,0th component models. This led to the improved performance.

was used throughout the experiments. Furthermore, all models

used diagonal-type covariance matrices. Parameter (N) in Accuracy
Model combination
.. each IFDHMM (%)
3.1. Performance of the Individual Models =y 025
The results presented in this section test the performance of the  ifd™ + ifd N=3 93.0
individual models. As described above, three component N=4 93.6

modeling techniques are considered, namely a standard HMMpe > Recognition performance of the model combining two
and two IFDHMMs, one IFDHMM with a dependency UPONIEDHMMS, one with a dependency uponepeding frames

receding frames and the other with a dependemgyn
gucceedi%g frames P (ifd") and the other with a dependency uponcseding frames
ifd*). The results are shown as a function of the number of

Table 1 shows the recognition results. For the standard HM ot%nditional frames (N) used in each qunent model.

the results are presented as a function of the number
mixtures, and for the IFDHMMs the results are shown as a

function of the number of conditional. For the IFDHMM, theNext, we include the standard HMM component into the model
number of conditional frames being employed is directlcombination. The recognition results are shown in Table 3,
proportional to the length of the segments beingounted for where a fixed number of 4 conditional frames are used in each



IFDHMM component, and the number of mixtures used in theombination of different types of acoustic model, thereby
standard HMM component is varied between 1 and B5ntegrating the capabiliies of each individual model for
Comparing Table 3 with Table 1 and Table 2, we observe thedpturing discriminative information. An example system built
the inclusion of a single-mixture, standard HMM componentipon the combination of the standard HMM technique with a
brought about little improvement in the performance. This isegment-based modeling technique was implemented.
due to the pooraccuracy of the single-mixture density in Experiments based on the combined model have shown an
characterizing the static spectral variations. However, as tls@nificantly improved performance over each of the individual
number of mixtures increased, the performance improvememiodels considered in isolation. The implemented model,
due to the addition of the standard HMM componestame though specific, may have a more general significance. That is,
significant. Typically, for the 4-conditional-frame and 5-improved performance can be obtained by combining different
mixture case, the error reduction resulting from the inclusion aypes of acoustic model.

the standard HMM componergached 24.7%, 25% and 17.2%
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