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ABSTRACT

This paper proposes a new spectral estimation method
for automatic speech recognition. The spectrum esti-
mated with the conventional data window of around 30 ms
shows harmonic structure in the voiced portions of speech
data. The harmonic frequency interval is often compa-
rable to the formant frequency interval for female voices
with high F0, which results in spectral estimation error.
The new idea is to estimate spectrum by taking the Lp
norm of the time series of the spectrum obtained from a
very short speech segment. The new method, called the
micro-segment spectrum integration, provides (1) precise
spectral estimation not a�ected by harmonic structure, and
(2) noise-robustness by suppressing noisy speech segments.
Phoneme recognition experiments demonstrate that the
micro-segment spectrum integration method outperforms
conventional spectral estimation methods.

1. INTRODUCTION

Recent automatic speech recognition (ASR) techniques es-
timate the speech spectrum using a speech frame with
length of around 30 ms. This window length was deter-
mined so as to stabilize spectral estimation by covering
more than two pitch periods. The spectrum obtained in
this way shows harmonic structure in voiced regions be-
cause of the repeated wave form in the data window. The
harmonic frequency-interval is comparable to the formant
frequency interval for high F0 (fundamental frequency)
voices such as those of females and children. This makes
it di�cult to correctly locate the real formants. Therefore,
spectral envelope estimation accuracy is reduced for such
high F0 voices.

The human auditory system has much higher temporal
resolution than conventional ASR systems. The temporal
resolution depends on the frequency channel that is shown
in the gammatone �lter model [1]. There is a trade-o�
between the temporal resolution and frequency resolution.
This paper addresses the problem of extracting phonetic
information using high temporal resolution without losing
the reliability of spectral estimation.

This paper proposes a novel spectral estimation method
for automatic speech recognition that is based on inte-
grating small pieces of spectrum using Lp norm. If the
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Figure 1. Micro-frame sequence. T is the conventional data
window size for speech spectral analysis.

data window length is shorter than the pitch period, the
estimated spectrum can avoid the e�ect of the harmonic
structure formed by the repeated speech signal. Pitch syn-
chronous spectral analysis is a method which provides a
spectrum una�ected by the harmonic structure.

2. MICRO SEGMENT SPECTRUM

Typical speech recognition schemes extract spectra using a
data window of around 30 ms wide. Fundamental frequen-
cies mostly distribute between 80 Hz and 350 Hz. Pitch
pulse interval is 12.5 ms for F0 = 80 Hz and 2.9 ms for F0
= 350 Hz. The data window size is chosen to cover at least
two pitch period even for a possible lowest F0.

If the data window size is shorter than the pitch period,
the estimated spectrum does not show harmonic structure.
Pitch synchronous analysis is a special case that adaptively
employs the same the data window size as the pitch period.
This paper uses a data window that is shorter than the
pitch period. The speech signal does not show periodicity
within such a short data window. This short data window
is called the micro frame and the spectrum estimated from
the short segment of speech is called the micro-segment
spectrum (MSS).

A speech frame of length T is divided intoN short speech
segments with overlap between adjacent segments. T is the
typical frame length used in existing speech recognizers.
Any spectral estimation method can be used for obtain-
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Figure 2. Sinusoidally changing frequency channel output en-
hanced by power of �.
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Figure 3. Lp norm of the sinusoidal signal.

ing MSS. Figure 1 illustrates how MSS is obtained from a
speech frame T . � , �, and T denote micro frame width,
micro frame shift, and frame length, respectively. Number
of micro frames in a speech frame is

N =
T � �

�
+ 1: (1)

If MSS are simply summed, a conventional spectrum
would be produced. If the squared MSS are summed,
however, a peak-weighted sum of spectra is produced. A
method for integrating the MSS using Lp norm is proposed
to formulate a generalized sum of the MSS. The method
is called the Micro Segment Spectrum Integration (MSSI).
The MSSI spectrum is given by

S(!; t) = f
1

N

N�1X
i=0

M(!; t+ �i)
�g1=�: (2)

where M(!; t + �i) denotes the i-th MSS in the speech
frame beginning at time t and must be positive. ! is the
angular frequency, and � denotes the power factor of the
Lp norm. The GPD (Generalized Probabilistic Descent)
method uses the Lp norm for MCE (Minimum Classi�ca-
tion Error) training [2].
Above formulation integrates the frequency channel out-

put sequences separately for each center frequency. A sim-
pli�ed way to integrate MSS is to accumulate the MSS with
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Figure 4. Sinusoidal frequency channel output partially buried
in noise.
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Figure 5. Micro Segment Spectral Integration value for the
frequency channel output corrupted by a stationary noise.

weighting by the powered log-energy. Let the energy and
the energy-normalized spectrum of a micro frame be u(t)
and Q(!; t), the MSSI spectrum can be computed by

u(t+ �i) =

Z �

��

M(!; t+ �i)d! (3)

Q(!; t+ �i) = M(!; t+ �i)=u(t+ �i) (4)

S(!; t) =

PN�1

i=0
u(t+ �i)�Q(!; t+ �i)PN�1

i=0
u(t+ �i)�

(5)

This equation sums the MSS with the weight of u(t+ �i)�.

3. MSSI FEATURES

The MSSI can represent a variety of functional features
by controlling the factor �. When � = 1, Eq. (2) yields
the arithmetic average of the MSS sequence. When � = 1,
Eq. (2) yields the root mean square. When � = �1
and � = 1, Eq. (2) outputs the minimum and maximum
values of the MSS sequence, respectively.

High energy portions in the sequence of a MSS frequency
channel output are emphasized when � > 1, and low energy
portions are emphasized when � < 1. Therefore, � should
be greater than 1 to suppress the low energy MSS which
may be corrupted by noise. On the other hand, � should
be less than 1 for suppressing high energy burst noise.



Figure 2 shows a frequency channel output raised to the
power of � where the output temporally changes as

M(i) = 0:5� 0:5 cos(2�i=N) + " (6)

1 < i < N

where " is a small constant that prevents divergence of the
Lp norm. Figure 3 shows the summed MSS using Lp norm
as

F (�) = f
1

N

NX
i=1

M(i)
�g1=�: (7)

When � = 1, F (�) outputs the value 0.5, the average of
M(i). In this paper, the range of � is limited to 0 < �
because speech information is concentrated at the high en-
ergy portions of the spectrogram.
Figure 4 illustrates the change in the MSS frequency

channel output whose valleys are buried by a stationary
noise with ten noise levels. The noise-corrupted MSS se-
quence is given by

M 0(i) = max[M(i); n0] (8)

n0 = (0:05; 0:1; : : : ; 0:5) (9)

where n0 is a stationary noise. Figure 5 shows the MSSI
of noise-buried spectral sequences. � is varied from 0.25
to 10. The larger the � is, the more the e�ect of additive
noise is suppressed. When � > 4, Eq. (7) output is almost
independent of the noise level n0.

4. MSS ESTIMATION

4.1. Power Spectrum method

MSS can be obtained by any spectral estimation method
such as DFT or LPC (linear predictive coe�cient). DFT
is a common spectral estimation method. If the power
spectrum of a micro-frame is denoted as P (k; i), MSS is
given by

M(k; i) = log[1 + P (k; i)] (10)

where k and i are the frequency channel number and MSS
serial number in a frame, respectively. Equation (10) is
close to a log power spectrum when the amplitude is large,
and is close to a linear spectrum when the amplitude is
small. The spectral value is always positive.

4.2. Autocorrelation method

LPC-based MSS can be obtained by integrating the auto-
correlation coe�cients obtained from a micro frame. This
method is an extension of Eq. (5). The micro segment
autocorrelation coe�cients are summed with the weight-
ing of log-energy raised to the power of �. Given the kth
autocorrelation coe�cient r(k; t+ �i) at micro frame i, the
weighted sum of the micro autocorrelation coe�cient is
given by

Rk(t) =

PN�1

i=0
v(t+ �i)�rk(t+ �i)PN�1

i=0
v(t+ �i)�

(11)

v(t+ �i) = log[1 + u(t+ �i)]: (12)

Given the autocorrelation coe�cient Rk(t), standard LPC
analysis can be used to obtain the LPC spectrum and
LPC cepstrum. Equation (11) calculates the weighted sum
of autocorrelation coe�cients and emphasizes high energy
MSS.
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Figure 6. Comparison between a DFT and three types of
micro-segment spectrum for word database.
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Figure 7. Comparison between a DFT and three types of
micro-segment spectrum for phrase database.

5. EXPERIMENT

Speaker-dependent and speaker-independent phoneme
recognition experiments were carried out for 23 Japanese
phonemes including 18 consonants and 5 vowels. The sam-
pling frequency was 12 kHz. A three-state left to right con-
tinuous distribution HMM was used as the phone model.
The output probability was represented with an 8 Gaus-
sian mixture. Common frame width was 30 ms, and frame
shift was 10 ms. Each MSSI spectrum was represented in
cepstrum form in the speech recognizer. The Hamming
window was used for obtaining MSS.

5.1. Speaker-Dependent recognition

A speaker-Dependent phoneme recognition experiment was
conducted using a database that included 5240 Japanese
common words and 274 phrases spoken by a male speaker.
HMMs were trained with a 2620-word set and tested with
the other 2620-word set and a 274-phrase set. MSSI spec-
trum was estimated with DFT-based method.

Performance was compared for various combinations of �
and frame size T . Figures 6 and 7 show speaker-dependent
23-phoneme recognition results using DFT for MMS esti-
mation. Figure 6 shows the result for the word database
and Figure 7 shows the result for the phrase database.
MSSI method shows better performance than conventional
DFT based spectral estimation. The recognition perfor-
mance is stable for all combinations of � and frame size.
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(b) Cepstrum and Delta-Cepstrum.

Figure 8. Performance comparison of three types of micro-
segment spectrum integration and a conventional LPC-based
spectrum (baseline) for male voice.

5.2. Speaker-Independent recognition

A speaker-independent experiment was conducted using a
database that included phonetically balanced 216 Japanese
word sets spoken by 10 male and 10 female speakers. Phone
HMMs were created as gender models. HMMs were trained
with nine speakers and tested for the speaker who was not
included in the training set. The test speaker was changed
over the 10 speakers of the same gender.

MSS was obtained by LPC-based method. Phoneme
recognition rates were compared with those achieved by
the baseline method using log LPC spectra. MSSI analysis
reduced the phoneme recognition error by 10 % compared
with conventional spectral estimation methods.

Various combinations of micro frame width � , micro
frame shift �, and � were tested. The micro frame widthes
were 4, 5, and 8ms. The micro frame shift was 2ms. �
was set at 0.5, 1, and 2. LPC analysis order and cepstrum
order was 16. The Delta-cepstrum window size was 70 ms.
Phoneme recognition rates were compared with that of the
conventional LPC cepstrum method.

Figures 8 and 9 show 23-phoneme recognition results for
males and females, respectively. In each �gure, (a) is the re-
sult with cepstrum only and (b) is the result with cepstrum
and delta-cepstrum. These �gures show that MSSI spec-
trum o�ers better phoneme recognition performance than
the conventional LPC spectrum. Typical recommended
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Figure 9. Performance comparison of three types of micro-
segment spectrum integration and a conventional LPC-based
spectrum (baseline) for female voice.

micro frame width was 5ms and � should be 1 or 2.

6. CONCLUSIONS

The micro-segment spectrum integration (MSSI) method
has been proposed for precise spectrum estimation. The
MSSI spectrum is obtained by the Lp norm of a sequence
of short segment spectra. The proposed method is stable
even when estimating the speech spectrum with high fun-
damental frequency. Since each MSS was obtained from
a short period of the spectrum, it can reduce the spectral
estimation error caused by harmonic structure. Speaker-
dependent and speaker-independent phoneme recognition
experiments demonstrated that the MSSI method achieves
higher performance than conventional spectral estimation
based on LPC or DFT.
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