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that word spotting is valid for a consumer electronics application

ABSTRACT in a voice activated VCR. [3]

As an input method for rapidly spreading small portable !N this paper, firstly we describe our speech recognition
information devices, development of speaker independeftethod which employs phoneme similarity as a feature
speech recognition technology which can be embedded onP@rameter. Secondly we propose a noise robustness method for
single DSP is now urgently requested. We have reportedPgctical use and report experimental results to verify the
speech recognition method using phoneme similarity vector ay@lidity of the method.
feature vector, which is quite robust for reduction of precision of
the feature parameter. We’ve also developed a recognition board “
with a single DSP, which works 100-word vocabulary using 2. Features of Our SpeeCh Recognltlon
only the internal memory inside the DSP. [1][2] Method

In this report, we propose a new technique which makes our

recognition method more robust, where a newly introduceg 1 phoneme Similarity and Distance Measure
noise standard template together with traditional phonemeyyne proved that phoneme similarity vector has smaller

standard templates for calculating phoneme similarity Vectqgyiqual difference than cepstrum coefficients and also that
realizes precise word-spotting.

When the newly proposed noise robustness method was te y
with 100 isolated word vocabulary speech of 50 subjectg
recognition accuracy of 94.7% was obtained under various noi
environments.

Sﬁ)ﬁ&neme similarity vector keeps high recognition accuracy even
s represented in low precision. [4] Hereafter we describe our
eech recognition method using phoneme similarity vector.
9.1 shows recognition processes in our method. Speech signal

Input seech
1. INTRODUCTION ‘
Recently portable information devices such as PDA a|| Acoustic anajsis I

rapidly spreading and speech recognition is expected as a useful
interfaces for such small and portable devices. To meet t| Extraction of featur@arameters
expectation, a reasonable cost and high performance under
actual environments are important for a speech reconizer.

LPC cepstrum coefficients

Regarding a cost problem, speech recognition software for i< — - I<:]| I
can be one solution. But, when it comes to small portab Similarity calculation Phoneme tepiates
dev@ces which work with a_§ingle DSP, hardware resources l Similarity parameters

available for speech recognition process are quite limited apd

it's difficult to embed traditional ASR algorithm into the small| Regression coefficient calculati<i1
devices. Therefore, we've developed a speech recognition board
which works well without extra hardware resources other than=

single DSP. Parameter seriggneration I | CVIVC tenplates I
To utilize the board in various applications, the recognizer ‘ @

must keep high performance under various noise environmept=

and word-spotting feature in a babble noise condition. Ma Word recgpnition(DP) I<:| Word tenplates__|

solutions have been proposed for noise robustness. Introduction ‘

of a distance measure based on posterior-probability enables
word spotting, and garbage model is well known to represent
unnecessary utterance. HMM decomposition with noise models
has been studied for noise robustness as well. We also verified

Result of recognition

Fig.1 Outline of a speaker independent word recognition



is acquired at 12kHz sampling frequency and analyzed into 15thag = (AL, AL ,,---,AL ,,) 3)

order of LPC cepstrum coefficients in 10msec frame interval. peme e

Then phoneme similarity based on linear discriminant function DTW is conducted in time-alignment of word matching.
is obtained by matching the segmented coefficient pattern of tésartial score s(i,j) between test speech and word model is
speech and phoneme standard templates, where each phoneaheulated by correlation cosine distance as Eq.(4), wheie.
templates consist of cepstrum coefficients over successive e i-th frame similarity vector of test speefl; it's time
frames and totally 150 dimensions. The similarity for a phonenderivative, €; the j-th frame similarity pattern of a word model,

p, Lp, is obtained as Eq. (1) and Ae, it's time derivatives.
— . d, . Ad; [Ae;
Ly =a, b, o (1) S(LJ):W—dI : +(1_W)—Ad : Al
where 23 | J'| |eJ| lad| | ei| 4)
- -1 ; ——— . . . . .
by = 1, ¥ 0, W is a weighting ratio and fixed as 0.5 in this study. Correlation

) ) cosine is an inner product of normalized similarity vector.
Here c is presents segmented pattern of test speeghs a

mean vector of the standard pattern of phoneme pSand is a
covariance matrix common for all the phoneme categories. : ; P
These phoneme standard templates are trained from a Iotédi?‘ Algorithm improvement for Embedding in

training subjects’ data so that it can be used for speaker Compact Hardware Resources

independent recognition. 24 phoneme similarities and theilOur speech recognition method is characterized by unique

time-derivatives, which are obtained at every frame by matchirfgature parameter of phoneme similarity vector and correlation

test speech and phoneme standard templates, compose featasine as a distance measure. Hereafter, we describe algorithm
parameters for word recognition. Word models are composed bgprovements in reduction of calculation processes and required
concatenating phoneme similarity pattern of CV/VC sub-woréhemory size especially for embedding it in a compact hardware.

units based on Japanese syllable “KANA” representation.

Total 383 units of sub-word word patterns are trained fro®.2.1 Reduction of Parameter Dimension

phoneme balanced 543 word set uttered by 16 male and 1Shoneme standard templates are trained by segmented speech

female subjects respectively. . o patterns which are discriminative for each phoneme. Therefore,
The phoneme similarity vector of i-th frame, di, is presented ghoneme similarity produced by matching test speech and these
Eq.(2). phoneme templates has large value in a phonetically
discriminative section in test speech. For example, Fig.2 shows

d, =(L,,L,,-+,L,,) 2 time sequence of normalized phoneme similarity of a sample

speech “ASAHL.” Similarity of phoneme /a/ has large value in
where Lj is similarity of phoneme j at the i-th frame.  the head and middle of the word utterance. While that of
phoneme /o/, which is similar to /a/, also has relatively large
Similarly, time derivatives of phoneme similarity vector areyalue in the same sections, similarities of other phonemes have
presented as Eq.(3). negligible small values. In a transitional section from phoneme
/al to /s/, similarity of /a/ gradually decreases, and those of /s/
and similar phonemes such as /c/ and /z/ increase. Observation
of phoneme similarity over the other section also shows that, in

A S A H ' time each frame, few kinds of phonemes have large values in their
— P similaries and most of other phonemes have zero value
a approximately.
3 This suggests us that only top N phonemes with large values
| B e S in each frame should be taken account in when calculating a
e
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O w %)
5] 166
s M @ e - o oo
E n / + * * * * *>
L g 1
95
g b I
2 d
5 5
ST E 90
o z b §7
hv g —e—similari "
hu 4 & ssb- -/ . (a) similarity parameter
s i (b) —&—cepstrum parameter
C
p 80 1 1 1 1 1 1 1 1 1 ]
t 1 2 4 6 8 10 12 14 15 20 24
K Number of parameters
% Fig.3 Recognition rate versus number of selected
. . parameters
Fig.2 An example of time sequence of phoneme

similarities (uttered “ASAHI”)



partial score of each frame. In other words, we can assume tktirage is only 23 k bytes. Considering that 370 k bytes are
score calculation corresponding to the other phonemes is macessary without reduction, the memory reduction is quite

necessary. efficient. In addition to 7 k bytes for phoneme standard
To verify the validity of the above assumption, we conductetemplates, memory requirement for our recognizer come to be
comparison tests where phoneme similarity vector in our 30 k byte in total.

method and traditional cepstrum coefficients are tested to Together with the reasonable memory requirement,
compare their robustness in dimension reduction. Fig.3 showsduction in computation process enables us to embed the
experimental results where only top N feature parameters aexognition algorithm in a low-cost fixed-point DSP for
taken account for partial score calculation. There horizontal axi®cabulary size of 100 words.
means N, the number of selected elements in feature parameters,
and vertical one does word accuracy rates. 212-word set uttered
by 20 subjects from Tohoku Univ. and Matsushita speech
databases were tested. In cepstrum coefficient case, order-base 3. Improvement for Noise Robustness
weighting by RPS was employed.

While the normalized phoneme similarity maintains higrﬁ .
accuracy even if the number of dimension decrease to six, el WO“?' Spotting Method . .
cepstrum coefficient loses recognition accuracy rapidly whenin Practical usage of a speech recognizer, high performance

the dimension comes to six or less. Japanese has 24 phoné‘rrﬁger various noise conditions is strongly desired. Furthermore

categories and original phoneme similarity vector has Janknown endpoint condition is essential in a practical noisy

dimension before reduction. Therefore, if we select signvironment. Therefore, we developed a unique word-spotting
phonemes for normalized similarity, we can reduce the procedi$thod to improve noise robustness in our method.

amount of inner product and required memory by one fourtn noise section proceeding/following speech, phoneme
(6/24). similarities before normalization should have small values and it

can be an important cue to discriminates speech/non-speech
section. However, in our recognition method, similarity vector is
normalized when used as feature parameter. It means that
Parameter Representation normalized similarities in noise sections have some amplitude
In word recognition stage, correlation cosine is employed faimilar to that in a speech section. Due to the amplified phoneme
a distance measure. Feature parameter in the word matchingiisilarity, miss-spotting between word templates and noise
not absolute similarity value but normalized one. It means thaection decreases accuracy of word-spotting functionality.
we focus on relative relation of similarities among phonemesTo solve such a problem in word spotting, we propose to add a
rather than similarity values themselves. This assumptiomise standard template to 24 phoneme standard templates and
originated from the observation of similarity values that only totroduce similarity toward the noise templates as one of
N phonemes, which may affect partial score calculation, hawdements in phoneme similarity vector. Then Eq.(2) and (3) are
significant values and difference among them (such as top-1 Oudated to (5) and (6) after introduction of the noise similarity
top-2 0.4, top-3 0.2), but the others have almost zero valuds).

2.2.2 Reduction of Bit Precision for Feature

This suggests us that high precision may not be necessary to - . (5)
. eS| d =(L,,L,, Lyl )
represent of the normalized similarity vectors.
Tablel shows results of recognition experiments where the bit 86 =(AL1, ALy, AL 5, AL ) ©)

precision in phoneme similarity representation is graduallyominant similarity toward the noise standard template
decreased. Bit preﬁlsmn ﬁz means - a ff.loat'ng'_po"'gecreases matching scores between word templates and a noise
representation and other smaller numbers do fixed-point. dbction in a test sample, and then reduces recognition errors

shows that reduction of bit precision does not cause drasfifiich were caused by low accuracy of word-spotting
affection on recognition accuracy. If similarities of top Sixfunctionality without the noise standard template.

phonemes are presented in four bits precision as featufgpe ngise standard template should be trained in a specific

parameter, memory amount required to store sub-word Unj§ise sound data if the noise environment can be exactly

(CVIVC) can be reduced by 1/32 comparing floatingsnecified, However, if it can't be specified, a mixture density
presentation of all the 24 phonemes’ similarities. (6/24x4/32) irained by plural sorts of typical noise sounds should be a

substitute of the specific noise When a mixture density is

Table 1 Recognition rate versus precision of employed for the noise similarity, the maximum similarity over
phoneme similarity vectors the all noise categories represents the noise similarity Ln as
( Top 6 phonemes are selected. Eq.(7) shows.
Bit Precision 32 8 6 4
Recognition Rate(%) | 97.5 | 97.5 | 97.5| 97.3 L, =maxL, | ™
I

Total memory amount for our recognizer is estimated as
follows. In each frame of a sub-word unit, eight bits aré.2 Experimental Results
necessary to store similarity of one phoneme. Four bits out oNoisy test speech data was simulated by merging noise sound
the eight bits are consumed to store information about whiab clean speech data. The clean speech data ( 100 Japanese city
phoneme is selected and the other four bits to represent #heme ) was sampled in a sound proof room, and three kinds of
similarity value. Considering that similarities of top sixnoise, exhibition show site, car, office environment, were added.
phonemes and six time-derivatives of similarities per a frame argirstly basic validity of introduction of the noise standard
stored as feature parameter and that sub-word units have 192@plate was tested. With a test speech data corrupted by
frames in total, reduced memory size for sub-word template



exhibition show site noise, we tested recognition accuracy byWhen a noise template was trained in a specific noise sound,

following three conditions. improvement was obtained when noise conditions are identical
in training and testing ( b, ¢, d ). However, when training and
testing conditions are different, accuracy is decreased in some

1)Endpoint Fixed (No Noise Standard Template) cases.

2)Endpoint Free (No Noise Standard Template) To achieve robustness in unspecific noise conditions, the

3)Endpoint Free (With Noise Standard Template trained mixture density noise template was also tested, where the
by exhibition show site noise) template was trained by three kinds of noise, exhibition show

Table2 shows the test result. Recognition rate in endpoint frege, car, and office environment. As the case (e) in Fig.4 shows,
condition without a noise standard template decreased 2.2 the mixture noise template keeps high performance over any
from endpoint fixed condition. On the other hand, decrease wikinds of testing conditions.

a noise standard template was only 1.6 %. That means th#tccording to these experimental results, we can conclude that a
introduction of a noise standard reduced error rate by 27% anmdxture noise standard template trained in typical plural noise
validity of proposed method for noise robustness was proved. conditions is valid to obtain a high performance in various noise

conditions.

Table 2  Relation between endpoint condition Furthermore, increase of computation process for the proposed

and recognition rate method is quite small since we only need to acquire noise

Endpoint Condition | Noise standard template Recognition rgte similarity by matchlr_lg test_ speech with a noise standard
- template. In comparison with total amount of process and
Fixed NA 97.5 (%) memory for the recognizer, increase of process and memory
Free NA 95.3 extra for the proposed method is quite trivial. Consequently the
Free Exhibition show site Noise| 95.9 recognition algorithm with the proposed noise robustness

method is practical in the sense that it can be implemented in a

Secondary proposed method was evaluated in various nof@ventional single DSP.
conditions. Three kinds of noise, exhibition show site, car,

office environment, were used for testing and training a noise 4. Conclusion

density form. method for noise robustness was proposed. With evaluation
Training conditions of noise standard templates are shown %ﬁperlments, we got following conclusions:

follows. n addition to conventional 24 phoneme standard templates,
introduction of a noise standard template was proved to achieve
a) No Noise Template (Baseline) high accuracy under endpoint free conditions. _ _
b) Exhibition Show Site Noise 2)M|>_<t_ure dt_ensnty _of a noise template trained in typl(_:al noise
c) Car Noise conditions is valid to achieve robustness in various test
d) Office Environment Noise conditions. . . ) )
e) Mixture Density with above three noises 3)Since the proposed method requires little increase in

computation process and memory, it's possible to embed the
Fig.4 shows evaluation results. Horizontal axis shows noid@Proved recognition method in a conventional single DSP for

category of test speech data, and vertical one does recognitf -m;ord vocabll(JIary S|ze|. H hod under farth .
rate. Each line consists of recognition results from the samé" @ future work, we evaluate the method under farther various

noise standard template. noise conditions and improve the algorithm for better
performance.
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