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ABSTRACT

A subtractive deconvolution algorithm is described which allows
one to separate a voiced speech signal into two components,
representing the time-invariant and dynamic parts of the signal
respectively. The resulting dynamic component can be encoded at
alower data rate than can the original speech signal. Results are
presented which validate the utility of decomposing the speech
waveforminto these two components, and demonstrate the ability
of the algorithm to represent speech signals at areduced datarate.

1. INTRODUCTION

Speech can be thought of as the result of a convolution between
two time-varying components, the glottal source and vocal tract
filter, neither of which can be measured directly. Trying to
separate out these componentsis useful becausethey each contain
particular information about aspects of the speech production
mechanism. Algorithmsfor separating these two componentsrely
on some assumption on how the characteristics of the signals
differ. For instance, linear prediction presupposes that the vocal
tract filter is al-pole whereas the glottal excitation isall-zero [1].

In this paper, voiced speech ismodelled as a convol ution between
arelatively time-invariant component (which may be equated to
the average glottal pulse and vocal tract impulse response shape)
and atime-varying component which encapsul ates all the dynamic
features of the speech signal. Because of the disparate nature of
the variability of these components, they are able to be separated
by means of time-domain deconvolution [2]. Section 2 describes
the deconvolution algorithms, while results of their application to
the low data-rate coding of speech signals are presented in
Section 3.

2.METHODS

It is convenient to separate an utterance s(t) into M contiguous
segments s(t), so that

M
() = lem(t—Tm),

m=

D

where T, is the point of application of the m" segment. Each
segment can be further described by the convolution

s () = v Qe +c(h) )

where o isthe convolution operator, e.(t) isthe excitation signal,
and v,(t) isthe vocal tract filter response during the m™" segment.
The quantity c.(t) is called the contamination, and embodies all
parts of the speech signal which are not described by the
convolution term. The excitation e,(t) is noise-like for unvoiced
segments of a speech utterance, and consists of a quasi-periodic

train of “glottal pulses” for voiced segments. A further
simplification to the model can be obtained by limit&(f) to one

of two forms — a noise soureg(t) for unvoiced segments and a
fixed-shape pulsey(t) for voiced segments. The implication here

is that each segment represents a single cycle of the glottal
vibration.

2.1. Shift-and-add Blind Deconvolution

Voiced speech can bbdught of as the outcome of applying a
series of fixed shape glottal pulsgff) to the time-varying filter

V() of the vocal tract. An equivalent process also exists in
astronomical imaging where a fixed image of the stars is filtered by
time-varying distortions of the atmosphere [3]. By collecting a
series of short time exposures, an ensemble of differently distorted
images is obtained.

Under certain conditions where the time-varying filter is
sufficiently variable [4], we can extract an estimate of the invariant
component (glottal pulse shape or astronomical image
respectively) by synchronously averaging the resulting ensemble
of short-time segments. The process, tershifttand-add (SAA)

in the astronomical literature, entalsfting each distorted output
such that its brightest component is at the origin, adding
across the ensemble to obtain the average. For voiced speech
therefore, the estimated invariant glottal pulse skafipis given

by:

So(® = (s (t+T D) (3)

whereT,, is the instant where,{t)| is greatest antl),, denotes
ensemble averaging over the voiced segnmaptfReplacing,(t)
in (3) by its expansioi2), with e,(t) = g,(t), gives

sa(t) = ) © (vm(t+Tm)>mv+ (Cm(t+Tm)>mv (4)

Under the assumption thaj(t) varies sufficiently from segment

to segment throughout the utterante,(t+T,)) reduces to an
impulse function, and if the contamination is independen(of

and small enough so thdt,(t+T,)) = 0, the resultant average
Sa()~ g(t). In practice,v,(t) does not vary in a completely
unbiased manner, sg(t) contains contributions from the part of
V,.(t) that persists throughout the utterance [5]. Fig.1(a) shows the
result of applying this algorithm to an utterance spoken by a male
speaker.

2.2 Subtractive Deconvolution -the CLEAN
Algorithm

The processing described in the previous section allows us to
extract a representation of the invariant component of the voiced
speech signal. To estimate the variant ponentv(t), it is
necessary to deconvoleg(t) from (t) in some manner. Care is
needed, however, because the additive contamingifrcan be
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Fig. 1 (a) Result of applying the SAA algorithm to the utterance ¥ 0.1
When sunlight strikes raindrops in the air, it acts like a prism, and
forms a rainbow, spoken by a male. The marks on the horizontal 0 - 0
axis indicate the extent of the average pitch interval 10ms. (b) Number of Iterations 1000 Rulses-per-second 5000
Deconvolution kernel g(t) obtained from the s_(t) shown in (a) by
truncating and adding an offset so that the endpoints approximate @) (b)
zero. Fig. 2 Signal-to-noise ratio (SNR) obtained with the CLEAN

algorithm applied to the segment of speech shown in Fig.3: (a)
appreciable if the actual excitation for any particular segment  SNR versus the number of iterations of the CLEAN algorithm for
differs significantly from gy(t). The CLEAN algorithm was  three values of the loop gain parameter y. (b) SNR versus the
originaly developed in the context of deblurring radio-  number of non-zero pulses in the CLEAN signal with and without
astronomical images [6], where a “clean” image can bepulse amplitude re-optimisation (y=0.7).
reconstructed from the distorted measurement and the known
blurring filter which is best described in the image-domain rathér.
than in the frequency domain. For speech signals likewise, the
spectrum of the blurring filteg,(t) exhibits a large dynamic range
which would cause difficulties for deconvolution algorithms that
operate in the frequency domain.

The residual is reduced:
rj+1(t) = I’j(t)*l)j g(tfpj): pj+T,< t <pj+T+ (8)

wherer. < t < 7, is the interval over whicd(t) is non-zero

) o ) ) when the maximum magnitude gt) occurs at=0.
Subtractive deconvolution is based on the idea that a filtered

signal can be considered as consisting of many copies of the filtek's
impulse respons&ach one shifted in time and weighted by the
amplitude of the unfiltered signal at that instant [2]. Hence we c&n

If the pulse positiop; signifies a new distinct pulse if)
(i.e.v,4(p) = 0), the pulse counteM, is incremented.

Steps 1-5 are repeated until eithies 7y, N, = P, OFj

recursively estimate the variant component characterising a
complete utterance by repeatedly estimating the amplitude and
position of each copy o&y(t) and subtracting it froms(t).
Simultaneously, the “clean” unfiltered signé) is constructed by
superimposing discrete pulses of appropriate amplitude and

> Jme Whereny is a threshold on the largest magnitude in
the residual signay(t), P, limits the number of non-zero
pulses in the CLEAN signal, adgl,, limits the maximum
number of iterations (a necessary condition in cases where
the algorithm does not converge).

position which represent each of the copies,@. Asvy is increased from 0, the rate of convergence of the algorithm

gllﬁo increases, until it becomes unstable at a critical valye of
ich depends upon the forms of bgft) ands(t). Fig.2(a) shows

e variation of SNR (the level of the residual sigy(@) versus

j the number of iterations, for three valueg,offheng(t) ands(t)

are as shown in Figs.1(b) and 3 respectively. Fig. 4(a) shows the

final CLEAN signal corresponding to Fig. 1(b) and 3, when the

SNR is equal to 15dB and= 0.5. The residuakt) is shown in

Fig. 4(b). Fig. 4(c) shows the reconstructiors@)f generated by

For a segment of speech the CLEAN subtractive deconvoluti
algorithm is defined by the following sequence of steps. Initiall%’}
r(t) is set equal te(t), andv(t) equal to O, for 0 <t <9, where

¥ is the duration of the segment. The deconvolution keytel
is set to a modified form o§.(t), such modification being
necessary to ensure that the end-pointgg(©f are of zero
amplitude. Thereafter, for each iteration labelled:by

1. The positiorp, at which j(t)| is greatest is located. convolving the CLEAN signal in Fig. 4(a) with tegt) shown in
Fig. 1(b).
p, = agmax |r,(t)], (5)
t At each iteration of the CLEAN algorithm, the amplitude of the
2. The amplitudey; corresponding to the weight of tffle  new pulse is estimated by considering only the peak magnitude of

the speech signal and the effects on it of the previously estimated

pulses. Later pulses may modify the residual signal such as to
(6) make the current estimate of the pulse position or amplitude

inaccurate. If a peak in the residual signal reappears in later

iterations at the position of a particular pulse, its amplitude is
. . . updated. However, significant improvements to the fidelity of the
3. Th? CLEAN S|gnall is updated to reflect this nevVlyreconstructions can be obtained bse-optimising the pulse

estimated copy og(t): amplitudes after they have been located by the CLEAN algorithm,
without increasing the number of non-zero pulses.

copy ofg(t) in s(t) is estimated as
v = yrj(pj)/g(O)

wherey is the loop gain.

V(D) = v, + vd(t-p), O<t<r™. ©)



Fig. 3 Segment of speech used to illustrate the CLEAN algorithm.
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Fig. 4 Results of applying 430 iterations of the CLEAN algorithm to
the segment of speech shown in Fig. 3 with a loop gain y=0.5. (@)
CLEAN signal consisting of the equivalent of 1580 non-zero pulses
per second. (b) Residual; and (c) reconstructed speech signal. The
SNR is 15dB.
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Fig. 5 Re-optimising of the CLEAN pulse amplitudes shown in

Fig.4(a). The three traces correspond to those shown in Fig.4, after
pulse amplitude optimisation. The SNR is increased to 21dB.

It is convenient to present the optimisation algorithm in the
sampled time domain. Readers should bear in mind, however, the
implied correspondence between the sample index n and the time
index t (t = nT,, where 1/T, is the sampling frequency).

The mean square error E between the original speech §[n] and the
speech signal reconstructed from the CLEAN signal is given by

2

E- Y

N=-o

(9)

ND
snl-)_vln-p]

j=1
For computational reasons, it is convenient to perform the
amplitude optimisation on blocks of N,,, CLEAN pulses, holding
theremaining pul ses constant. Denoting theindex of thefirst pulse
in such ablock asj,, the error E,, within the block becomes

- Jo*Noge~1 2
Epe = 2 YN - Y. valn-p] (10)
n=-co i=io
where
jo-L N,
y[n] = s[n] - Z;D‘g[n_ni] __7_ZN Dig[n_pi]
jod';\‘opt’l o (11)

I’[I’]]+ E Uig[nfpi]

i=j,

isthe signa remaining when the effects of al the CLEAN pulses
that are not within the optimisation block have been removed from
the speech signal. Note that it is more convenient to compute y[n]
via the second form in (11) because r[n] is available from the
CLEAN dgorithm.

Setting the partial derivatives of E,, with respect to each of the vy,
to zero leads to the matrix equation

opt 1

by Yep, O = Gy

k=j

oo (12)

o

where

= Y gln-plgin-p]

N-o

%, (13)

isthe (p,+p,)" term from the autocorrelation of the CLEAN kernel
g[n], and

6, = 3 dn-plyirl (14)

is the p" term from the cross-correlation between the CLEAN
kernel g[n] and the modified speech signal y[n] for the current
optimisation block. Standard matrix solving techniques can be

invoked to solve (12) and thereby obtain “optimised” values for

the CLEAN pulses,.

Fig.5(a) shows the CLEAN signal obtained after optimising the
CLEAN pulses shown in Fig.4(a). The resulting reconstructed
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Fig. 6 SNR as a function of data-rate for utterances processed by (a) SAA/CLEAN, and (b) MP-LPC. Utterances by both
male and female speakers are included. The line drawn on each graph is a linear regression through all the points.

speech signal isshown in Fig.5(c). Theimprovement in SNR over
the un-optimised version is indicated by the curves shown in
Fig.2(b). These graphs indicate that pulse amplitude
re-optimisation providesroughly 6dB improvement to the SNR of
the reconstructed speech over the basic CLEAN algorithm.

3.LOW DATA-RATE SPEECH CODING

As indicated by the signals shown in Figs.4(a) and 5(a), the 1.
CLEAN signal obtained from a speech utterance consists of
non-zero “CLEAN pulses” interspersed with zero-valued samples
Depending on the utterance and the level to which the residual
signal is reduced by CLEAN, the number of CLEAN pulses can be
as low as 2000 per second whilst still providing good.
reconstruction (refer to Fig.2(b)). This is considerably less than the
number of samples in the speech signal, implying that the CLEAN
pulses can be used as a low data rate representation of the spgech
signal. However, because the CLEAN pulses are not uniformly
spaced, both their amplitudes and positions need to be encoded In
order to take full advantage of the benefits implied by the reduced
number of pulses, efficient means of encoding the pulse positions
and amplitudes must be employed. For illustrative purposes hege,
the pulse amplitudes are quantised and encoded with 2-4 bits per
sample, with run length coding (block lengths of 3-6bits) used to
encode the pulse intervals. The SAA signal adds insignificantly
to the overall data-rate.

Fig.6 shows the SNR of speech that has been processed at various
data rates by either SAA/CLEAN or multi-pulse LPC (MP-LPC).
Results are shown for speech uttered by both male and female
speakers. These graphs indicate that at a data rate of 12kbit/s the
two schemes provide reconstructed speech with similar SNR.
However, the SNR ofthe MP-LPC reconstructions increases much
more rapidly than that of the SAA/CLEAN reconstructions with
higher data rates.

4. CONCLUSIONS

This paper has presented a new, straightforward and simple
method for analysing a spch record, encoding it forammical
storage and transmission, and resynthesising it. The CLEAN
algorithm has some similarities with the MP-LPC pulse
identification algorithm, particularly with regard to the
optimisation of the pulse amplitudes. However, here the
computationally simple SAA technique is employed to extract a
long-term “filter” from the speech signal, rather than a

time-varying LPC filter as in MP-LPC. The results reported herein
confirm that this scheme provides a similar performance to the
MP-LPC technique at data rates of about 12kbit/s.
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