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ABSTRACT

Large vocabulary continuous speech recognition systems

show a signi�cant decrease in performance if a users pro-

nunciation di�ers largely from those observed during system

training. This can be considered as the main reason why

most commercially available systems recommend| if not en-

force | the individual end user to read an enrollment script

for the speaker dependent reestimation of acoustic model

parameters. Thus, the improvement of recognition rates for

dialect speakers is an important issue both with respect to a

broader acceptance and a more convenient or natural use of

such systems.

This paper compares di�erent techniques that aim on a bet-

ter speaker independent recognition of dialect speech in a

large vocabulary continuous speech recognizer. The methods

discussed comprise Bayesian adaptation and speaker cluster-

ing techniques and deal with both the availability and ab-

sence of dialect training material. Results are given for a case

study that aims on the improvement of a German speech rec-

ognizer for Austrian speakers.

1. INTRODUCTION

With the appearance of large vocabulary continuous speech

recognition systems (LVCSRS) users are no longer forced to

insert short pauses between words, but still have to face a

signi�cant loss in recognition accuracy, if their pronuncia-

tion di�ers largely from those observed during system train-

ing. Therefore, such systems may be unusable for dialect

speakers, unless they are forced to speak in an inconvenient

manner, or at least require a speaker dependent reestimation

of acoustic model parameters.

The use of dialect a�ected speech for the training proce-

dure of a Hidden Markov Model based speech recognizer is

one way to overcome these limitations, but needs the collec-

tion of a substantial amount of data for a reliable estimation

of the model parameters. In contrast, adding even a lim-

ited amount of dialect a�ected speech to a large portion of

"clean" training data may result in a lower recognition rate

for speakers that use standard pronunciation.

This paper compares a variety of techniques that can deal

with the tradeo� outlined above, both in case of availability

or absence of dialect training data. Results are given that

were obtained in a study that aimed on the improvement of

a German LVCSRS for Austrian speakers. Section 2 gives

a brief outline of both the training procedure and the base-

line recognition system. Section 3 applies pre-clustering of

training speakers, which is appropriate if no additional di-

alect data is available for the training of the acoustic models.

Section 4 compares di�erent methods that can be applied

if additional training data is available: the creation of an

acoustic model for dialect speech, the training of a common

recognizer for both dialect and clean speech, and the use of

Austrian training data for the fast adaptation of a German

recognizer. Finally, Section 5 gives a conclusion and an out-

look on further work.

2. SYSTEM DESCRIPTION

The basic ideas underlying the LVCSRS used here are de-

scribed in some detail in [2, 1]. The training of the system

is a bootstrap procedure that assumes the availability of an

initial speaker independent system. In a �rst step cepstral

features and their �rst and second order derivatives are com-

puted and viterbi aligned against the transcription of the

training data.

For the training of context-dependent, subphonetic HMMs,

phonetic contexts are extracted by passing the feature vec-

tors through a decision tree. The data at each leaf of a tree

is clustered, and described by a mixture of Gaussian den-

sities components with diagonal covariance matrices. The

so created models are re�ned by running a few iterations of

the well known forward-backward training algorithm (see e.g.

[9]). The total number of both context dependent HMMs and

Gaussians is limited by the speci�cation of an upper bound

and depends on the amount and contents of the traininig

data.

In the experiments described below we use a combination of

a word based trigram language model and a class based tri-

gram model that yields a signi�cant improvement compared

to the word based model alone in preliminary experiments



(not described here). The class based model is automati-

cally created by a combinatorial optimization procedure [5]

that relies on the use of uni- and bigram information and a

small set of regular expressions (approx. 50) for the encod-

ing of rudimentary morphological information, like e.g. the

endings of in
ected words. The algorithm starts with a ran-

dom assignment of words into a �xed number of classes, and

maximizes the similarity between words and their possible

classes.

3. DIALECT ADAPTATION

WITHOUT DIALECT DATA

Speaker clustering techniques have been applied successfully

to create acoustic models for certain speaker types, like e.g.

male/female or fast/slow speakers [7, 6]. If no additional di-

alect training data is available one might try to �nd a subset

of the \clean" training data that is best suited to create an

acoustic model for the dialect test speakers. The algorithm

used here employs a preclustering of the training speakers

that comprises the following steps [3]:

1. Partitioning of the set of training speakers into clusters

of acoustically similar speakers,

2. training of an acoustic model for each cluster,

3. selection of a model that is best suited for the decoding

of a test speaker's utterances, and

4. adaptation of the model to a test speaker's acoustic

space.

In the �rst step the characteristics of a speaker is de�ned

by the speaker dependent mean and variances of 186 allo-

phonic HMMs. These are obtained from a viterbi alignment

of each test speakers utterances against their transcription.

The similarity between any two speakers is measured by the

sum of Gaussian log likelihoods of corresponding allophones
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where ci is the merged E-M count of the i-th allophone, �
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is the variance of the i-th merged Gaussian, and n is the

dimension. In a bottom up clustering procedure Eqn. 1 is

employed to merge the speaker dependent allophonic Gaus-

sians until the desired number of clusters is obtained.

The second step comprises the computation of an acoustic

model from the training data of those speakers who belong to

a given cluster. Since therefore only a subset of the complete

training data is available for the estimation of the cluster

dependent model parameters, a speaker indenpendent model

is used for Bayesian smoothing according to Eqn. (3) { (5),

see Section 4.

The third step computes the characteristics of each test

speaker on a small amount of held out data and evaluates

the Euclidean distance to each cluster. The cluster with

the smallest distance is choosen for the decoding of the test

No. of clusters

Test spkr 1 8 6 4 2

Gr 13.16 13.04 13.08 12.69 12.99

At 20.10 18.06 17.85 18.80 18.99

Table 1: Speaker independent error rates for dialect adap-

tation by speaker clustering.

speaker's data. For a further improvement of recognition re-

sults the cluster dependent HMM parameters can be moved

towards the particular test speaker's acoustic model by use of

MLLR adaptation [8]. However, since we do not want to in-

termix e�ects from speaker adaptation and dialect handling

in this study, this step is ommited in the remainder.

Table 1 showes results for both the recognition of "clean"

and dialect a�ected speech for di�erent numbers of speaker

clusters. The �rst column (1 cluster) gives the error rates

for the baseline recognizer, that are averaged over 20 Ger-

man (Gr) and 20 Austrian (At) test speakers (10 female, 10

male) who read the same script. In the training procedure

slightly more than 30000 Gaussian mixture components were

estimated and approx. 2000 context dependent HMMs were

trained from 90 hours of "clean" speech that was read by 700

native German speakers.

For the Austrian test speakers the improvement is 11.19 per-

cent, if 6 clusters are used. In contrast, for the German

speakers the improvement is smaller (3.57 percent for 4 clus-

ters), but for both groups of speakers the improvement does

not merely rely on a gender-based splitting of the training

corpus, which can be observed if the number of clusters is

limited to two.

4. DIALECT ADAPTATION USING

DIALECT TRAINING DATA

Whereas speaker clustering can be applied even in the ab-

sence of dialect training data, the availability of a limited

amount of dialect a�ected speech allows for various methods

that can improve the performance of a LVCSRS for dialect

speakers:

� the training of an acoustic model from dialect data only,

using the procedure outlined in Section 2,

� the incorporation of both dialect data and clean speech

into the training procedure, and

� the fast adaptation of an already existing, \clean"

acoustic model to the characteristics of dialect speakers.

The �rst approach requires a large amount of dialect data for

the proper training of the HMMs, and is expected to result

in a specialized recognizer for dialect speech. In contrast, the

other two options may be used if less dialect training data

is available, because parameters are estimated from a larger,

common set of data. Moreover, these methods seem suitable



Recognizer

Test spkr GrGr GrAt AtAt

German 13.16 13.72 22.27

Austrian 20.10 15.61 12.24

Table 2: Error rates for incorporation of dialect data into

the training procedure.

to achieve a good compromise, i.e. a single recognizer that

works well for the di�erent groups of speakers.

Table 2 compares the baseline system (GrGr) and two rec-

ognizers that were trained with additional data from the

austrian speakers (GrAt) as well as with dialect data alone

(AtAt). In all experiments we used approx. 15 hours of

speech that was collected from 100 Austrian training speak-

ers (50 female and 50 male). By the speci�cation of an upper

bound for the number of context dependent HMMs and the

number of Gaussian mixture components, it was assured that

each recognizer has approximately the same dimension.

Whereas the training of an acoustic system with dialect data

alone results in a specialized recognizer for the Austrian di-

alect, the acoustic system trained with both sets of data

shows no substantial degradation for the German speakers

(4.2 percent), but results in a 22.3 percent relative improve-

ment for the Austrian speakers.

The fast adaptation approach bears some interest, because

it avoids the time consuming training procedure. For that

purpose, the forward-backward algorithm is used to create

EM-counts
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where ci(t) is the a posteriori probability of the i-th Gaussian

at time t, computed from all observed dialect data xt. The
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smoothing factor k

Test spkr GrGr 1 50 500

German 13.16 17.10 16.54 15.62

Austrian 20.10 14.18 14.08 14.36

Table 3: Error rates for dialect adaptation by Bayesian

smoothing.

Here, N denotes the total number of mixture components, L

denotes the set of Gaussians that belong to the same leaf as

the i-th Gaussian, and k is a constant, the smoothing factor.

Table 3 gives results for di�erent values of the smoothing

factor. The error rate for the German speakers increases

signi�cantly if little weight is given to the seed HMM pa-

rameters (k is small), and approaches the baseline error rate

for a more rigid smoothing. In contrast, the error rate for

Austrian speakers is lowered by 30.0 percent for k = 50, but

does not improve further for smaller values of k. However,

given the 20.4 percent degradation for the German speakers,

it becomes evident, that this approach is well suited for the

fast creation of a acoustic system for dialect speakers, but

is not feasible, if a single acoustic system for both groups of

speakers is needed.

5. DISCUSSION AND FUTURE

WORK

This paper compared di�erent methods for an improved

recognition of dialect a�ected speech. As a case study, we

dealt with the recognition of Austrian speakers by a German

LVCSRS.

If no dialect a�ected speech data is available for the training

of the acoustic system, preclustering of the training speakers

turned out to be appropriate. For this method the speaker

independent error rate for the Austrian test speakers de-

creased by 11.2 percent, without lowering the error rate for

the German speakers.

Since | in the case of 8 clusters | for 9 out of 40 test speak-

ers the selected cluster did not produce the best decoding re-

sults we performed an additional cross-decoding experiment.

The results for an ideal cluster identifaction algorithm are

given in Table 4 and suggest that more work in this direc-

tion is neccessary. Further experiments (not reported here)

show that an additional bene�t can be obtained from the

use of gender based seed models for Bayesian smoothing in

Eqn. (3) { (5).

Clearly, the system performance for Austrian speakers ben-

e�ts from the availability of additional training material.

Here, the training of a common acoustic system yielded a

22.4 percent improvement for the Austrian speakers, and re-

sulted in an acceptable small degradation for the German

speakers. Thus, we consider this method as a good com-

promise and have recently applied speaker clustering to this



No. of clusters

Test spkr 1 8 6 4 2

German 13.16 11.96 12.10 12.24 12.99

Austrian 20.10 16.93 17.03 18.24 18.99

Table 4: Speaker independent error rates for an ideal cluster

selection mechanism.

acoustic system to achieve a further improvement. Prelimi-

nary experiments indicate that a reliable selection of a dialect

dependend cluster can be achieved by a hierarchical voting

mechanism.

Finally, one might think of the introduction of additional,

dialect speci�c baseforms both for the training of the acoustic

models and the recognition procedure.
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