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ABSTRACT

Large vocabulary continuous speech recognition systems
show a significant decrease in performance if a users pro-
nunciation differs largely from those observed during system
training. This can be considered as the main reason why
most commercially available systems recommend — if not en-
force — the individual end user to read an enrollment script
for the speaker dependent reestimation of acoustic model
parameters. Thus, the improvement of recognition rates for
dialect speakers is an important issue both with respect to a
broader acceptance and a more convenient or natural use of
such systems.

This paper compares different techniques that aim on a bet-
ter speaker independent recognition of dialect speech in a
large vocabulary continuous speech recognizer. The methods
discussed comprise Bayesian adaptation and speaker cluster-
ing techniques and deal with both the availability and ab-
sence of dialect training material. Results are given for a case
study that aims on the improvement of a German speech rec-
ognizer for Austrian speakers.

1. INTRODUCTION

With the appearance of large vocabulary continuous speech
recognition systems (LVCSRS) users are no longer forced to
insert short pauses between words, but still have to face a
significant loss in recognition accuracy, if their pronuncia-
tion differs largely from those observed during system train-
ing. Therefore, such systems may be unusable for dialect
speakers, unless they are forced to speak in an inconvenient
manner, or at least require a speaker dependent reestimation
of acoustic model parameters.

The use of dialect affected speech for the training proce-
dure of a Hidden Markov Model based speech recognizer is
one way to overcome these limitations, but needs the collec-
tion of a substantial amount of data for a reliable estimation
of the model parameters. In contrast, adding even a lim-
ited amount of dialect affected speech to a large portion of
”clean” training data may result in a lower recognition rate
for speakers that use standard pronunciation.

This paper compares a variety of techniques that can deal
with the tradeoff outlined above, both in case of availability
or absence of dialect training data. Results are given that
were obtained in a study that aimed on the improvement of
a German LVCSRS for Austrian speakers. Section 2 gives
a brief outline of both the training procedure and the base-
line recognition system. Section 3 applies pre-clustering of
training speakers, which is appropriate if no additional di-
alect data is available for the training of the acoustic models.
Section 4 compares different methods that can be applied
if additional training data is available: the creation of an
acoustic model for dialect speech, the training of a common
recognizer for both dialect and clean speech, and the use of
Austrian training data for the fast adaptation of a German
recognizer. Finally, Section 5 gives a conclusion and an out-
look on further work.

2. SYSTEM DESCRIPTION

The basic ideas underlying the LVCSRS used here are de-
scribed in some detail in [2, 1]. The training of the system
is a bootstrap procedure that assumes the availability of an
initial speaker independent system. In a first step cepstral
features and their first and second order derivatives are com-
puted and viterbi aligned against the transcription of the
training data.

For the training of context-dependent, subphonetic HMMs,
phonetic contexts are extracted by passing the feature vec-
tors through a decision tree. The data at each leaf of a tree
is clustered, and described by a mixture of Gaussian den-
sities components with diagonal covariance matrices. The
so created models are refined by running a few iterations of
the well known forward-backward training algorithm (see e.g.
[9]). The total number of both context dependent HMMs and
Gaussians is limited by the specification of an upper bound
and depends on the amount and contents of the traininig
data.

In the experiments described below we use a combination of
a word based trigram language model and a class based tri-
gram model that yields a significant improvement compared
to the word based model alone in preliminary experiments



(not described here). The class based model is automati-
cally created by a combinatorial optimization procedure [5]
that relies on the use of uni- and bigram information and a
small set of regular expressions (approx. 50) for the encod-
ing of rudimentary morphological information, like e.g. the
endings of inflected words. The algorithm starts with a ran-
dom assignment of words into a fixed number of classes, and
maximizes the similarity between words and their possible
classes.

3. DIALECT ADAPTATION
WITHOUT DIALECT DATA

Speaker clustering techniques have been applied successfully
to create acoustic models for certain speaker types, like e.g.
male/female or fast/slow speakers [7, 6]. If no additional di-
alect training data is available one might try to find a subset
of the “clean” training data that is best suited to create an
acoustic model for the dialect test speakers. The algorithm
used here employs a preclustering of the training speakers
that comprises the following steps [3]:

1. Partitioning of the set of training speakers into clusters
of acoustically similar speakers,

2. training of an acoustic model for each cluster,

3. selection of a model that is best suited for the decoding
of a test speaker’s utterances, and

4. adaptation of the model to a test speaker’s acoustic
space.

In the first step the characteristics of a speaker is defined
by the speaker dependent mean and variances of 186 allo-
phonic HMMs. These are obtained from a viterbi alignment
of each test speakers utterances against their transcription.
The similarity between any two speakers is measured by the
sum of Gaussian log likelihoods of corresponding allophones

log P = —ci[ 5 log(2m) + 3 IL, 1], (1)

where c¢; is the merged E-M count of the i-th allophone, I".
is the variance of the i-th merged Gaussian, and n is the
dimension. In a bottom up clustering procedure Eqn. 1 is
employed to merge the speaker dependent allophonic Gaus-
sians until the desired number of clusters is obtained.

The second step comprises the computation of an acoustic
model from the training data of those speakers who belong to
a given cluster. Since therefore only a subset of the complete
training data is available for the estimation of the cluster
dependent model parameters, a speaker indenpendent model
is used for Bayesian smoothing according to Eqn. (3) — (5),
see Section 4.

The third step computes the characteristics of each test
speaker on a small amount of held out data and evaluates
the Euclidean distance to each cluster. The cluster with
the smallest distance is choosen for the decoding of the test

No. of clusters
Test spkr 1 8 | 6 | 4 | 2
Gr 13.16 13.04 | 13.08 | 12.69 | 12.99
At 20.10 || 18.06 | 17.85 | 18.80 | 18.99

Table 1: Speaker independent error rates for dialect adap-
tation by speaker clustering.

speaker’s data. For a further improvement of recognition re-
sults the cluster dependent HMM parameters can be moved
towards the particular test speaker’s acoustic model by use of
MLLR adaptation [8]. However, since we do not want to in-
termix effects from speaker adaptation and dialect handling
in this study, this step is ommited in the remainder.

Table 1 showes results for both the recognition of ”clean”
and dialect affected speech for different numbers of speaker
clusters. The first column (1 cluster) gives the error rates
for the baseline recognizer, that are averaged over 20 Ger-
man (Gr) and 20 Austrian (At) test speakers (10 female, 10
male) who read the same script. In the training procedure
slightly more than 30000 Gaussian mixture components were
estimated and approx. 2000 context dependent HMMs were
trained from 90 hours of ”clean” speech that was read by 700
native German speakers.

For the Austrian test speakers the improvement is 11.19 per-
cent, if 6 clusters are used. In contrast, for the German
speakers the improvement is smaller (3.57 percent for 4 clus-
ters), but for both groups of speakers the improvement does
not merely rely on a gender-based splitting of the training
corpus, which can be observed if the number of clusters is
limited to two.

4. DIALECT ADAPTATION USING
DIALECT TRAINING DATA

Whereas speaker clustering can be applied even in the ab-
sence of dialect training data, the availability of a limited
amount of dialect affected speech allows for various methods
that can improve the performance of a LVCSRS for dialect
speakers:

e the training of an acoustic model from dialect data only,
using the procedure outlined in Section 2,

e the incorporation of both dialect data and clean speech
into the training procedure, and

e the fast adaptation of an already existing, “clean”
acoustic model to the characteristics of dialect speakers.

The first approach requires a large amount of dialect data for
the proper training of the HMMs, and is expected to result
in a specialized recognizer for dialect speech. In contrast, the
other two options may be used if less dialect training data
is available, because parameters are estimated from a larger,
common set of data. Moreover, these methods seem suitable



Recognizer
Test spkr || GrGr | GrAt | AtAt
German 13.16 | 13.72 | 22.27
Austrian 20.10 | 15.61 | 12.24

Table 2: Error rates for incorporation of dialect data into
the training procedure.

to achieve a good compromise, i.e. a single recognizer that
works well for the different groups of speakers.

Table 2 compares the baseline system (GrGr) and two rec-
ognizers that were trained with additional data from the
austrian speakers (GrAt) as well as with dialect data alone
(AtAt). In all experiments we used approx. 15 hours of
speech that was collected from 100 Austrian training speak-
ers (50 female and 50 male). By the specification of an upper
bound for the number of context dependent HMMs and the
number of Gaussian mixture components, it was assured that
each recognizer has approximately the same dimension.

Whereas the training of an acoustic system with dialect data
alone results in a specialized recognizer for the Austrian di-
alect, the acoustic system trained with both sets of data
shows no substantial degradation for the German speakers
(4.2 percent), but results in a 22.3 percent relative improve-
ment for the Austrian speakers.

The fast adaptation approach bears some interest, because
it avoids the time consuming training procedure. For that
purpose, the forward-backward algorithm is used to create

EM-counts
S cith), 2)

where ¢;(t) is the a posteriori probability of the i-th Gaussian
at time ¢, computed from all observed dialect data z,. The
means H:’, variances ['**, and mixture component weights
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smoothing factor k
Test spkr || GrGr 1 | 50 | 500
German 13.16 | 17.10 | 16.54 | 15.62
Austrian 20.10 | 14.18 | 14.08 | 14.36

Table 3: Error rates for dialect adaptation by Bayesian
smoothing.

Here, N denotes the total number of mixture components, L
denotes the set of Gaussians that belong to the same leaf as
the i-th Gaussian, and k is a constant, the smoothing factor.

Table 3 gives results for different values of the smoothing
factor. The error rate for the German speakers increases
significantly if little weight is given to the seed HMM pa-
rameters (k is small), and approaches the baseline error rate
for a more rigid smoothing. In contrast, the error rate for
Austrian speakers is lowered by 30.0 percent for £ = 50, but
does not improve further for smaller values of k. However,
given the 20.4 percent degradation for the German speakers,
it becomes evident, that this approach is well suited for the
fast creation of a acoustic system for dialect speakers, but
is not feasible, if a single acoustic system for both groups of
speakers is needed.

5. DISCUSSION AND FUTURE
WORK

This paper compared different methods for an improved
recognition of dialect affected speech. As a case study, we
dealt with the recognition of Austrian speakers by a German
LVCSRS.

If no dialect affected speech data is available for the training
of the acoustic system, preclustering of the training speakers
turned out to be appropriate. For this method the speaker
independent error rate for the Austrian test speakers de-
creased by 11.2 percent, without lowering the error rate for
the German speakers.

Since — in the case of 8 clusters — for 9 out of 40 test speak-
ers the selected cluster did not produce the best decoding re-
sults we performed an additional cross-decoding experiment.
The results for an ideal cluster identifaction algorithm are
given in Table 4 and suggest that more work in this direc-
tion is neccessary. Further experiments (not reported here)
show that an additional benefit can be obtained from the
use of gender based seed models for Bayesian smoothing in

Eqn. (3) - (5).

Clearly, the system performance for Austrian speakers ben-
efits from the availability of additional training material.
Here, the training of a common acoustic system yielded a
22.4 percent improvement for the Austrian speakers, and re-
sulted in an acceptable small degradation for the German
speakers. Thus, we consider this method as a good com-
promise and have recently applied speaker clustering to this



No. of clusters
Test spkr 1 8 | 6 | 4 | 2
German 13.16 11.96 | 12.10 | 12.24 | 12.99
Austrian 20.10 16.93 | 17.03 | 18.24 | 18.99

Table 4: Speaker independent error rates for an ideal cluster
selection mechanism.

acoustic system to achieve a further improvement. Prelimi-
nary experiments indicate that a reliable selection of a dialect
dependend cluster can be achieved by a hierarchical voting
mechanism.

Finally, one might think of the introduction of additional,
dialect specific baseforms both for the training of the acoustic
models and the recognition procedure.

Acknowledgement We would like to thank our colleagues
in the IBM European Speech Research Group (located
in Seville, Rome, Paris, Hursley, and Heidelberg) and in
the IBM Human Language Technology Research Group
(Thomas J. Watson Research Center, Yorktown Heights) for
many valuable suggestions and the continuous exchange of
ideas.

6. REFERENCES

1. L. Bahl, S. Balakrishnan-Aiyer, J. Bellegarda, M. Franz,
P. Gopalakrishnan, D. Nahamoo, M. Novak, M. Padmanab-
han, M. Picheny, and S. Roukos. Performance of the IBM large
vocabulary continuous speech recognition system on the ARPA
Wall Street Journal task. In Proc. of the IEEE Int. Confer-
ence on Acoustics, Speech, and Signal Processing, pages 41-44,
Detroit, 1995.

2. L. Bahl, P. de Souza, P. Gopalakrishnan, D. Nahamoo, and
M. Picheny. Context-dependent vector quantization for con-
tinuous speech recognition. In Proc. of the IEEE Int. Confer-
ence on Acoustics, Speech, and Signal Processing, Minneapolis,
1993.

3. Y. Gao, M. Padmanabhan, and M. Picheny. Speaker adap-
tation based on pre-clustering training speakers. In Proc. of
the 5th European Conference on Speech Communication and
Technology, pages 2091-2094, Rhodes, Greece., 1997.

4. J. Gauvain and C. Lee. Maximum a posteriori estimation of
multivariate gaussian mixture observations of markov chains.
IEEE Trans. on Speech and Audio Processing, 2(2):291-298,
1994.

5. S. Geissler. Improving a speech recognition system by unsuper-
vised classification of large vocabularies. Technical report, IBM
Deutschland Informationssysteme GmbH, Institute for Logics
and Linguistics, 1997.

6. T. Hazen and J. Glass. A Comparison of novel techniques for
instantaneous speaker adaptation. In Proc. of the 5th European
Conference on Speech Communication and Technology, pages
2047-2050, Rhodes, Greece, 1997.

7. T. Kosaka, S. Matsunaga, and S. Sagayama. Tree-structured
speaker clustering for speaker-independent continuous speech
recognition. In Proc. of the 3rd Int. Conf. on Spoken Language
Processing, pages 1375-1378, Yokohama, 1994.

8. C. Leggetter and P. Woodland. Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
markov models. Computer Speech and Language, 9:171-185,
1995.

9. L. Rabiner. Fundamentals of Speech Recognition. Signal Pro-
cessing Series. Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.



