
GLOBAL OPTIMISATION OF NEURAL NETWORK MODELS

VIA SEQUENTIAL SAMPLING-IMPORTANCE RESAMPLING

Jo~ao F.G. de Freitas Sue E. Johnson Mahesan Niranjan Andrew H. Gee

Cambridge University Engineering Department,

Trumpington Street, Cambridge CB2 1PZ, UK.

fjfgf,sej28,niranjan,ahgg@eng.cam.ac.uk

ABSTRACT

We propose a novel strategy for training neural networks

using sequential Monte Carlo algorithms. This global opti-

misation strategy allows us to learn the probability distri-

bution of the network weights in a sequential framework.

It is well suited to applications involving on-line, nonlinear

or non-stationary signal processing. We show how the new

algorithms can outperform extended Kalman �lter (EKF)

training.

1. INTRODUCTION

This paper addresses sequential training of neural networks

using powerful sequential sampling techniques. Sequential

techniques are important in many applications of neural

networks involving real-time signal processing, where data

arrival is inherently sequential. Furthermore, one might

wish to adopt a sequential training strategy to deal with

non-stationarity in signals, so that information from the

recent past is lent more credence than information from

the distant past.

One way to sequentially estimate neural network models is

to use a state space formulation and the extended Kalman

�lter [7]. This involves local linearisation of the output

equation, which can be easily performed, since we only

need the derivatives of the output with respect to the un-

known parameters. This approach has been employed by

several authors, including ourselves. Recently, we demon-

strated a number of advanced ideas in this context using

a hierarchical Bayesian framework [1]. In particular, we

proposed ways of tuning the noise processes to achieve reg-

ularisation in sequential learning tasks.

However, local linearisation leading to the EKF algorithm

is a gross simpli�cation of the probability densities in-

volved. Nonlinearity of the output model often induces

multi-modality of the resulting distributions. Gaussian ap-

proximation of these densities will lose important details.

The approach we adopt in this paper is one of sampling.

In particular, we propose the use of `sampling-importance

resampling' [5, 8] and `sequential importance sampling'

[3, 4, 6] algorithms to train multi-layer neural networks.

2. STATE SPACE NEURAL

NETWORK MODELLING

As in our previous work, we start from a state space repre-

sentation to model the neural network's evolution in time.

A transition equation describes the evolution of the net-

work weights, while a measurements equation describes the

nonlinear relation between the inputs and outputs of a par-

ticular physical process. In mathematical terms:

wk+1 = wk + dk (1)

yk = g(wk;xk) + vk (2)

where (yk 2 <m) denotes the output measurements, (xk 2
<d) the input measurements and (wk 2 <q) the neural net-
work weights. The measurements nonlinear mapping g(:)

is approximated by a multi-layer perceptron (MLP). It is

widely known that this neural model exhibits the capacity

to approximate any continuous function, to an arbitrary

precision, as long as it is not restricted in size. Nonetheless,

the work may be easily extended to encompass recurrent

networks, radial basis networks and many other approxi-

mation techniques. The measurements are assumed to be

corrupted by noise vk, which in our case we model as zero

mean, uncorrelated Gaussian noise with covariance R.

We model the evolution of the network weights by assum-

ing that they depend on their previous value wk and a

stochastic component dk. The process noise dk may rep-

resent our uncertainty in how the parameters evolve, mod-

elling errors or unknown inputs such as target manoeu-

vres. We assume the process noise to be a zero mean, un-

correlated Gaussian process with covariance Q. We have

shown previously that the process of adapting Q is equiva-

lent to adapting smoothing regularisation coe�cients and

distributed learning rates [1]. To simplify the exposition

in this paper, we do not treat the problem of estimat-

ing the noise covariances and initial conditions. To under-

stand how these variables may be estimated via hierarchi-

cal Bayesian models or EM learning, the reader is referred

to our previous work [1, 2].

From a Bayesian perspective, the posterior density func-

tion p(WkjYk), where Yk = fy1; y2; � � � ; ykg and Wk =

fw1; w2; � � � ; wkg, constitutes the complete solution to

the sequential estimation problem. In many applications,

it is of interest to estimate one of its marginals, namely the

�ltering density p(wkjYk). If we know this density, we can

easily compute various estimates of the network weights

recursively, including centroids, modes, medians and con-

�dence intervals. Given a prior, the �ltering density can

be computed by:

p(wkjYk) = p(wkjyk; Yk�1)

=
p(ykjwk; Yk�1)p(wkjYk�1)R
p(ykjwk; Yk�1)p(wkjYk�1)dwk

=
p(v�k)

R
p(d�k�1)p(wk�1jYk�1)dwk�1R

p(v�
k
)
R
p(d�

k�1)p(wk�1jYk�1)dwk�1dwk

where v�k = yk � g(wk;xk) and d�k�1 = wk �wk�1.

This optimal solution unfortunately entails multi-

dimensional integration, making it impossible to evaluate

analytically for most applications. Therefore approxima-

tions such as direct numerical integration or Monte Carlo

simulation methods are needed.

3. SEQUENTIAL SAMPLING-

IMPORTANCE RESAMPLING

In Monte Carlo simulation a set of weighted samples drawn

from the posterior density function of the neural network

weights is used to map the integrations involved in the in-

ference process to discrete sums. More precisely, we make

use of the following Monte Carlo approximation:

p̂(WkjYk) =
1

S

SX
i=1

�(Wk �W
(i)

k)

where W
(i)

k represents the samples used to describe the

posterior density and �(:) denotes the Dirac delta function.

Consequently, any expectations of the form:

E[fk(Wk)] =

Z
fk(Wk)p(WkjYk)dWk

may be approximated by the following estimate:

E[fk(Wk)] �
1

S

SX
i=1

fk(W
(i)

k)

where the samples W
(i)

k are drawn from the posterior den-

sity function.

A problem arises because often we cannot sample directly

from the posterior density function. However, we can cir-

cumvent this di�culty by sampling from a known, easy-to-

sample, proposal density function �(WkjYk) and making

use of the following substitution:

E[fk(Wk)] =

Z
fk(Wk)

p(WkjYk)

�(WkjYk)
�(WkjYk)dWk

=
E�[qk(Wk)fk(Wk)]

E�[qk(Wk)]

where the unnormalised importance ratios are given by:

qk =
p(YkjWk)p(Wk)

�(WkjYk)

Hence, by drawing samples W
(i)

k
from the proposal func-

tion �(:), we get

E[fk(Wk)] �

PS

i=1
fk(W

(i)

k
)qk(W

(i)

k
)PS

i=1
qk(W

(i)

k
)

which leads to:

p(WkjYk) = lim
S!1

SX
i=1

~q
(i)

k
�(Wk �W

(i)

k
)

where ~qik is normalised over all i of the S samples.

In order to compute a sequential estimate of the posterior

density function at time k without modifying the previ-

ously simulated states Wk�1, we may adopt the following

proposal density:

�(WkjYk) = �(W0jY0)
QN

k=1
�(wkjWk�1; Yk)

Consequently, if we assume that the states correspond to a

Markov process and that the observations are conditionally

independent given the states, it follows that:

qk = qk�1
p(YkjWk)p(Wk)�(Wk�1jYk�1)

p(Yk�1jWk�1)p(Wk�1)�(WkjYk)

= qk�1
p(ykjwk)p(wkjwk�1)

�(wkjWk�1; Yk)
(3)

We adopt the following proposal function, likelihood and

prior:

�(wkjWk�1; Yk) = p(wkjwk�1) (4)

p(yjw) / exp((yk�ĝ(wk;xk))
T
R
�1
(yk�ĝ(wk;xk))) (5)

p(w0) = N (�0; �0); q
(i)

0 = p(y0=w
(i)

0) (6)

Thus we can draw initial weights and importance ratios

from the prior (eqn 6) and for each sampling stage, pre-

dict the new weights (eqn 1), evaluate the new importance

ratios (eqns 3,4,5) and resample if necessary.

Resampling can be performed to concentrate the samples

round the areas with a high importance ratio. A uniform

random number is mapped onto the cumulative impor-

tance distribution and the sampling index corresponding

to this point is found. By repeating this S times, the new

resampled indices are determined, with the new impor-

tance ratios being set to S�1. Clearly, more \children"

arise from the original samples with the greatest likelihood,

with the random variation being added by the subsequent

prediction stage. This process will be called Sampling Im-

portance Resampling (SIR) and is illustrated in Figure 1.

Liu and Chen have argued that when all the importance ra-

tios are nearly equal, resampling only reduces the number

of distinctive streams and introduces extra variation in the

simulations [6]. Therefore, in order to reduce the computa-

tional cost of the algorithm, resampling is only performed

when the variance of the importance ratio exceeds a cer-

tain threshold. This leads to Sampling Importance Partial

Resampling (SIPR).

update

w

p(y w)

prediction

Figure 1: The sequential sampling process. The sam-

ples are propagated according to their likelihood found in

the update stage. A process noise term is added to the

surviving samples and those with higher likelihood are as-

signed more \children". This produces a better weighted

description of the likelihood function.

4. EXPERIMENTS

The �rst experiment compares the use of the described SIR

and SIPR techniques with the standard EKF algorithm.

This allows the ability of the SIR techniques to handle non-

linear models to be seen. The second experiment shows the

ability of SIR to �nd hidden parameters in a simple neural

network when the network model is both stationary and

non-stationary.

4.1. Expt 1: Non-linear Modelling

Input-output data was generated using the following func-

tion:

y(x1; x2) = 4 sin(x1 � 2) + 2x
2
2 + 5 + �

where the inputs x1 and x2 where simulated from a Gaus-

sian distribution with zero mean and unit variance. The

noise � was generated from a Gaussian distribution with

zero mean and standard deviation equal to 0:01. The data

was then approximated with an MLP with 5 hidden sig-

moidal neurons and a linear output neuron. The MLP was

trained sequentially using the SIR, SIPR and EKF algo-

rithms. The threshold for SIPR gave an average of 50%

occurrence of resampling. 100 samples were used in the

Monte Carlo simulations.

Table 1 shows the average one-step-ahead prediction er-

rors obtained for 10 runs, of 200 time steps each, on a

Silicon Graphics R10000 workstation. It is clear from the

results that reducing the number of occurrences of resam-

pling does not yield a great reduction in computational

time. The results also show the improvements which can

be gained by using SIR at the expense of increased com-

putational time.

EKF SIPR SIR

RMS Error 6.04 4.81 2.83

Computational Time (sec) 4 98 109

Table 1: Expt 1: Function approximation results.

4.2. Expt 2: Latent States Estimation

To assess the capacity of our algorithms to estimate hidden

parameters, output data was generated from an MLP, with

one sigmoidal hidden unit and a linear output unit. This

input consisted of two Gaussian sequences. This is a very

simple model, which is only slightly more complex than a

logistic data generator and is shown in Figure 2.

Σ Σ
θ 2

θ
1

θ 3

θ 4

θ 5

Figure 2: Neural net architecture used for experiment 2.

A second network with the same structure was then trained

using the input-output data generated by the �rst network.

Figure 3 shows the performance of the SIR algorithm for

a stationary model, both with training data and with data

not encountered in the training set. As depicted in Fig-

ure 4, the means of the network weights converged to their

true value. Figure 4 also shows the error bars (one stan-

dard deviation wide) of the estimates. The evolution of the

probability density function of the weight of value 1 is plot-

ted in Figure 5. The experiment was then repeated with a

non-stationary model, where some of the network weights

changed with time. The results are shown in Figure 6.

0 10 20 30 40 50 60 70 80 90 100

5

5.2

5.4

5.6

5.8

6

T
ra

in
in

g

0 10 20 30 40 50 60 70 80 90 100

5

5.2

5.4

5.6

5.8

6

T
es

t

Time

Figure 3: Network prediction on training and test data.

Actual output[o o] and estimated output [|].

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

2

3

4

5

6

N
et

w
or

k
w

ei
gh

ts

Time

Figure 4: Hidden weights estimation for a stationary

model, � = w = (2;�0:5; 0:1; 1; 5)T

−1
0

1
2

3
4

0

50

100

150

200
0

100

200

300

400

500

Sample spaceTime

P
os

te
rio

r
de

ns
ity

Figure 5: Evolution of the probability density of �4

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

N
et

w
or

k
w

ei
gh

ts

Time

Figure 6: Hidden weights estimation for a non-stationary

model, � = w = (2;�0:5� 2k=N; 0:5; 1; 1:5 + 2k=N)T

5. CONCLUSIONS

Our experiments, together with various �nancial studies

presented in [3], clearly indicate that the neural network

training algorithms proposed in this paper represent an

interesting and promising alternative to existing methods.

Sampling methods provide a better description of the prob-

ability distribution of the network's weights than conven-

tional second order gradient descent methods, such as the

extended Kalman �lter. Yet, for problems where the pos-

terior is essentially unimodal, the EKF leads to accurate

and much faster algorithms.

Acknowledgements

We would like to thank Neil Gordon (DERA) for his helpful

assistance. Jo~ao F.G. de Freitas is �nancially supported by

two University of the Witwatersrand Merit Scholarships, a

Foundation for Research Development Scholarship (South

Africa), an ORS award and a Trinity College External Stu-

dentship (Cambridge).

6. REFERENCES

1. J F G de Freitas, M Niranjan, and A H Gee. Hi-

erarchichal Bayesian-Kalman models for regularisation

and ARD in sequential learning. Technical Report

CUED/F-INFENG/TR 307, Cambridge University,

http://svr-www.eng.cam.ac.uk/~jfgf, December 1997.

2. J F G de Freitas, M Niranjan, and A H Gee.

The EM algorithm and neural networks for nonlinear

state space estimation. Technical Report CUED/F-

INFENG/TR 313, Cambridge University, http://svr-

www.eng.cam.ac.uk/~jfgf, 1998.

3. J F G de Freitas, M Niranjan, A H Gee, and A Doucet.

Sequential Monte Carlo methods for optimisation of

neural network models. Technical Report CUED/F-

INFENG/TR 328, Cambridge University, http://svr-

www.eng.cam.ac.uk/~jfgf, July 1998.

4. A Doucet. On sequential simulation-based

methods for Bayesian �ltering. Techni-

cal Report CUED/F-INFENG/TR 310,

Cambridge University, 1998. Available at

http://www.stats.bris.ac.uk:81/MCMC/pages/list.html.

5. N J Gordon, D J Salmond, and A F M Smith. Novel ap-

proach to nonlinear/non-Gaussian Bayesian state esti-

mation. IEE Proceedings-F, 140(2):107{113, April 1993.

6. J S Liu and R Chen. Sequential Monte Carlo methods

for dynamic systems. To appear in the Journal of the

American Statistical Association, 1998.

7. S Singhal and L Wu. Training multilayer perceptrons

with the extended Kalman algorithm. In D S Touretzky,

editor, Advances in Neural Information Processing Sys-

tems, volume 1, pages 133{140, San Mateo, CA, 1988.

8. A F M Smith and A E Gelfand. Bayesian statistics with-

out tears: a sampling-resampling perspective. Ameri-

can Statistician, 46:84{88, 1992.

