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ABSTRACT

The increasing interest in the statistical approach to Machine
Translation is due to the development of effective algorithms for
training the probabilistic models proposed so far. However, one
of the open problems with Statistical Machine Translation is the
design of efficient algorithms for translating a given input string.
For some interesting models, only (good) approximate solutions
can be found. Recently a Dynamic Programming-like algorithm
has been introduced which computes approximate solutions for
some models. These solutions can be improved by using an it-
erative algorithm that refines the succesive solutions and uses a
smoothing technique for some probabilistic distribution of the
models based on an interpolation of different distributions. The
technique resulting from this combination has been tested on the
“Tourist Task” corpus, which was generated in a semi-automated
way. The best results achieved were a word-error rate of 9.3%
and a sentence-error rate of 44.4%.

1. INTRODUCTION

The statistical approach is an adequate framework for intro-
ducing automatic learning techniques in Machine Translation
[3, 14, 5, 15].

Under this framework, given an input strings from S? (S is a
finite input alphabet andS? is the set of finite length strings over
S), theprobabilistic translationof s is an output string,̂e 2 E?

(E is a finite output alphabet) such that

ê = argmax
e2E?

Pr(ejs) (1)

Using Bayes’ theorem, and taking into account thatPr(s) is not
a function ofe,

ê = argmax
e2E?

Pr(sje)Pr(e) (2)

Equation (2) is known as theFundamental Equation of Ma-
chine Translation [4]. In Statistical Translation, the input string
s, which is to be translated, is interpreted as a distorted string of
an original stringe fromE? through a noisy channel. The prob-
lem consist of finding and estimatiêe of the original string given
the distorted strings. In this framework, Pr(e) represents the
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probability that the original string is produced, and Pr(ejs) is the
probability that the original stringe is distorted in the observed
strings. The problem consist of finding an estimateê of the orig-
inal string given the distorted strings. In practice, an estimate of
Pr(e) is used as aLanguage Modeland an estimate of Pr(sje) is
used as aTranslation Model. Among the reasons reported by
Brown et al. [4] for using (2) instead (1), it can be observed
that in (1), good output Language Models can aid the process of
searching which allows for focusing on thewell-formedoutput
strings.

Interesting Translation Models were proposed in [4] and in [14].
With the model proposed in [14], a Dynamic Programming algo-
rithm can be designed to solve (2) [10, 11]. However, the cor-
responding algorithms for the models 1 to 5 in [4] are based on
a certain type of theA? algorithm [3, 15]. The computational
cost of this type of algorithms depends on the heuristics intro-
duced. To overcome this problem we proposed in [6] a linear
time approach on the total size of training data, that was based on
a single Dynamic Programming-like algorithm which computes
approximate solutions when the known IBM-Model2 from [4] is
used. This proposal can be improved through an iterative process
in which the solution is refined in succesive iterations, by using
a technique similar to the one used in [6]. One of the problems
of inferring statistical distribution from finite data is the problem
of “unseen” events. So far, different techniques have been pro-
posed for dealing with this problem [2] in language and in acous-
tic modeling. We have chosen an interpolation of a probabilistic
distribution with different degrees of precision.

2. A STATISTICAL MODEL FOR
MACHINE TRANSLATION

The Translation Models introduced by [4] are based on the con-
cept of alignment between the components of thetranslation
pairs (s,e) 2 S? �E?.

Formally, an alignment is a mapping between the sets of posi-
tions in s and e: a � f1; :::; jsjg � f1; :::; jejg. However, in
[4], the concept of alignment is restricted to being a function
a: f1; :::; jsjg ! f0; :::; jejg, whereaj = 0 means that the posi-
tion j in s is not aligned with any position ofe. All the possible
alignments betweene ands are denoted byA(e,s) and the prob-
ability of translating a givene into s by an alignment is denoted



by Pr(s,aje), therefore

Pr(sje) =
X

a2A(s;e)

Pr(s,aje) (3)

The second model for Pr(s,aje) proposed in [4] (Model 2) is

PrM2(s,aje) = �

jsjY
j=1

t(sj j eaj )�(aj jj; jsj; jej) (4)

where� is a positive constant,t(sj j ei) is thetranslation prob-
ability of the input wordsj given the output wordei (by ei we
represent thei-th symbol of stringe and byeji the substring of
e from i to j), and�(aj jj; jsj; jej) is thealignment probability.
This distribution gives us the alignment probability of the i-th
word in the target sentence, given any position in the source sen-
tence and the length of both sentences. If equation (4) is used in
(3), we have,

PrM2(sje) = �

jsjY
j=1

jejX
i=0

t(sj j ei)�(ijj; jsj; jej) (5)

Given f(s(1); e(1)); (s(2); e(2)); � � � ; (s(K); e(K)
)g, a training

sample, the estimation of the translation probabilities and the
alignment probabilities for both models can be performed by us-
ing the transformations proposed in [4]. These transformations
allow us to increase the product of (5) for all training pairs in
maximum likelihood training. In the case of IBM Model 1, the
training procedure is guaranteed to find the global optimum.

3. SMOOTHING THE TRANSLATION
MODEL

In both machine translation and speech recognition, we are often
faced with the problem of estimating a large number of parame-
ters from a relatively small amount of training data.

This is a typical problem in language modeling, above all when
they are modeled with n-grams. To solve this problem, a lot of
well-known techniques was proposed [7, 8, 9]. One of these tech-
niques has been used for smoothing the distribution of alignment
probabilities (�(ijj; jsj; jej)) shown in equation (5). The train-
ing data for these distributions are quite sparse due to the high
number of parameters that are neccesary to estimate.

In order to solve this problem, the proposed smoothing technique
is based on two simplifications of the model shown in (5):

� The Reduced Distribution, that consists of the elimina-
tion of the length of the source sentence, denoted by
�r(ijj; jej).

� The Simplified Distribution, that also eliminates the posi-
tion of the source sentence in the last distribution. This is
given by�s(ijjej).

The number of parameters required by these distributions is
lower than the one in (5), and the modelling accuracy is lower
too.

With these premises, the smoothing of the translation model is
based on an interpolation [2] of the original probability distribu-
tion and the Reduced and Simplified distributions.

This can be seen as follows:

�d(ijj; jsj; jej) =

� � �(ijj; jsj; jej) + 
 � �r(ijj; jej)

+(1� � � 
) � �s(ijjej) (6)

Therefore equation (5) can be rewritten as:

PrM2(sje) = �

jsjY
j=1

jejX
i=0

t(sj j ei)�d(ijj; jsj; jej) (7)

4. A PROCEDURE FOR MACHINE
TRANSLATION

The goal of the Statistical Approach to MT is given by (2). The
problem is to design an efficient algorithm for searchingŝ (or an
approximation tôs).

From (2)

max
e2E?

Pr(e)Pr(sje) =

max
I

max
e
I
1
2EI

Pr(eI1)Pr(sjsj1 jeI1) (8)

In other words, the maximisation in (2) can be performed by
searching the best output stringeI1 for each possibleI, and then
by searching the optimalI.

Let us suppose that the length of the output string is known. The
Translation Model used is (4) and, the Language Model will be
a stochastic regular grammar, given byGR = (N;E;R; q0; p),
where:N is the set of non-terminals,E is the output alphabet,R
is the set of rules likeq ! eq0 or q ! e (we suppose that exist a
stateF 2 N in order to allowing the last rule could be rewriten
by q ! eF ), q0 is the first symbol of the grammar andp is a
probabilistic function likep : R!]0; 1] such that8q 2 N :

X
e2E;q02N

p(q ! eq
0
) = 1

For the sake of simplicity we will usep(qi�1; ei; qi) instead of
p(qi�1 ! eiqi), whereqi is the reached state when the symbol
ei was produced, begining in the state whereei�1 was produced,
and so on.

From (5) and (8):

max
e
I
1
2EI ;qI

1
2NI

�
PrGR

(e
I
1)PrM2(s

jsj
1 j e

I
1)

�
=

max
e
I
1
2EI ;qI

1
2NI

�
p(q0; e1; q1)

IY
i=2

p(qi�1; ei; qi)

jsjY
j=1

IX
i=0

t(sj jei)�(ijj; jsj; I)

�
(9)



From (9), the following equation can be achieved: for1 < i < I

and8e 2 E,

(q̂i�1(qi); êi(qi)) = argmax
(qi�1;ei)2N�E

�

p(qi�1; ei; qi)� T (qi�1; i� 1)�

jsjY
j=1

�
Q(ei�1; i� 1; j) + t(sj je)�(ijj; jsj; I)

+R(j; i+ 1)
��

(10)

where

R(j; i + 1) =

IX
k=i+1

t(sj j�ek)�(kjj; jsj; I) (11)

Note that�ek (i + 1 � k � I) correspond to output symbols
that are not yet explored, therefore,�e is obtained in an iterative
process, i.e.,�e is the guessed output (ê) (the optimal one of a
previous iteration). In the first iterationR(j; i) = 0 for 1 � i �

I and1 � j � jsj.

In the first iteration, no guessed output is used and theQ in (10)
correspond to the approximate contribution ofsj to PrM2 if the
language model stateqi is achieved andei1 is produced. Thus,

Q(qi; i; j) =

iX
k=0

t(sj jek)�(kjj; jsj; I) i > 1 and 8j (12)

With

Q(q1; 1; j) = t(sj je0)�(0jj; jsj; I)+

t(sj je)�(1jj; jsj; I) 8j (13)

And T in(10) is

T (qi; i) =

iY
k=1

p(qk�1; ek; qk) i > 1 (14)

With

T (q1; 1) = p(q0; e1; q1) (15)

From (10) to (15),8e 2 E

T (qi; i) = p(q̂i�1(qi); êi(qi); qi)� T (q̂i�1(qi); i� 1) (16)

and

Q(qi; i; j) = Q(q̂i�1(qi); i� 1; j) + t(sj jêi(qi))�(ijj; jsj; I)

(17)

The initialisations are (13) and (15).

Finally, the last symbol is obtained fori = I:

q̂I = argmax
8qI2N

0
@T (qI ; I)�

jsjY
j=1

Q(qI ; I; j)

1
A (18)

The length of the output sentence is set statistically around the
mean of the output lengths for each length of the input sentence.

The equations (11) to (18) are used in an iterative way:

algorithm TRANSLATION-SEARCH

INPUTS

- The translation probabilitiest.

- The alignment probabilities�.

- A general regular language modelGR.

- An input strings2 S?.

OUTPUT

- argmaxe (PrGR
(e) PrM2(ejs))

METHOD

- initialisation

Compute a first approximation (ê) to the solution by
using equation (10) to (18) by settingR(j; i) = 0,
1 � i � I and1 � j � jsj and for the different out-
put lengthsI according to the statistical distribution
observed in the training set.

- iteration

While not convergencedo
Compute a new approximation (ê) to the solution
by using equations (10) to (18). In equation (11),
�e corresponds to thêe of the previous iteration.

end of While

end-of-algorithm

The computational time complexity of each iteration isO(jsj �

Imax � nI � jEj), whereImax is the maximum output length
allowed andnI is the number of output lengths tested.

5. EXPERIMENTS AND RESULTS

We selected the “Traveller Task” [13] to experiment with the
search algorithm proposed here. The general domain of the task
was a visit by a tourist to a foreign country. This domain included
a great variety of different scenarios, from limited-domain appli-
cations to unrestricted natural language. The task used for the
experiments reported here corresponded to a scenario of human-
to-human communication situations at reception desk of a ho-
tel. This task provided a small “seed corpus” from which a large
set of sentence pairs was generated in a semi-automatic way [1].
From the different pairs of languages that were generated, only
Spanish to English was considered for this work. The parallel
corpus consisted of 500,000 sentence pairs (171,481 different
sentence pairs). The input and output vocabulary sizes were 689
and 514, and the average input and output sentence lengths were
9.7 and 9.9, both respectively.

From the above corpus, a sub-corpus of 10,000 random sentence
pairs was selected for training purposes. Testing was carried out
with 500 input random sentences generated independently from
the training set.

Under these circumstances two different experiments were done:
Both used the task described above, the first one in its original
form, and the other one categorizing certain words of the vocab-
ulary, i.e. the proper names, dates, hours and numbers. In both
cases, the algorithm was proven using the smoothed translation
model.



The output language model was a Stochastic Regular Grammar
built by the ECGI algorithm [12]. The output test-set perplexity
of the inferred ECGI grammar was 3.53.

We tested the number of iterations for the proposed algorithm.
There was no improvement in the word error rate when the num-
ber of iterations was increased beyond three. The results are
shown in Tables 1 and 2 with and without smoothing of the align-
ment probabilities, respectively.

Error-Rate Percentage

1st Iter. 3rd Iter.
Categories WER SER WER SER

NO 39.6 % 74.7 % 12.3 % 53.5 %
YES 37.7 % 65.3 % 10.1 % 46.3 %

Table 1: Translation results in first and third iterations of the al-
gorithm. Word-Error Rate and Sentence-Error Rate for 500 test
sentences. No smoothing was used for the alignment probabilis-
tic distribution.

Error-Rate Percentage

1st Iter. 3rd Iter.
Categories WER SER WER SER

NO 37.3 % 72.8 % 10.7 % 51.9 %
YES 36.3 % 64.4 % 9.3 % 44.4 %

Table 2: Translation results in first and third iterations of the
algorithm. Word-Error Rate and Sentence-Error Rate for 500
test sentences. Smoothing was used for alignment probabilistic
distribution, with a value of� = 0:6 and
 = 0:3.

6. CONCLUSIONS

A new iterative search algorithm for Statistical Translation has
been proposed here. In the experiments, the Translation Model
IBM-Model2 was combined with a Stochastic Regular Grammar
under the search algorithm instead of the conventional bigram
models. In this approach, all the components were learned auto-
matically from training pairs; the Translation Model by a Maxi-
mum Likelihood Estimation procedure, and the Language Model
by a Grammatical Inference technique. These techniques were
tested on the “Traveller Task”. The main conclusions that can be
drawn are:

� Taking into account the complexity of the task, good results
(as a Word-Error Rate and a Sentence-Error Rate measure
of the translated sentences) can be achieved (with a linear
time complexity algorithm).

� Comparing the Tables 1 and 2, slightly better results were
obtained using the smoothing technique. In any case, the
error rate decreased when lexical categories were used.

� As can be seen from Tables 1 and 2, the iterations drasti-
cally improve the translation quality.
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