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ABSTRACT

For large vocabulary continuous speech recognition

based on hidden Markov models, we often face the is-

sue of trade-o� between the accuracy and the speed.

A new method is proposed in this article such that

complex models are used to retain a high accuracy

whereas the speed is achieved by using the similari-

ties in acoustic matches. These similarities are based

on the assumption that we refer as a look-phone-

context property. By using the look-phone-context

property, the number of acoustic matches can be sub-

stantially reduced in the course of scoring all possi-

ble phonetic transcriptions of recognition hypotheses.

Experiments on the speaker-independent Wall Street

Journal task show that a fast-response system can be

reached without compromising the accuracy.

1. INTRODUCTION

For large vocabulary continuous speech recognition,

we have adopted a two-pass search strategy in which

inexpensive models are used in the �rst pass to pro-

duce the word graph [1, 5] and more powerful lan-

guage models and acoustic models are used in the

second pass to rescore the word graph. In the article

[4], we developed a clustering method to increase the

accuracy, which considered both left and right phone

contexts as well as word-level information, the begin-

ning and ending of words and function words. Since

the number of acoustic distributions of the second

pass after clustering is about 8,000 in the 30,000-word

system, which is nearly tripled compared with that in

our previous 5,000-word real-time system [6], a new

approach in the second pass is necessary to achieve a

fast-response system.

The objective of the second pass is to �nd the high-

est scoring recognition hypothesis by searching the

word graph produced by the �rst pass. We allow

for multiple segmentation hypotheses [6] in order to

score partial transcriptions exactly, whereas in the

�rst pass, each partial transcription that is hypoth-

esized has a unique segmentation associated with it.

We use a depth �rst search algorithm to conduct the

search. As far as the acoustic matching is concerned,

the principal operation is to propagate an array of for-

ward scores for each phone with its contexts. A naive

implementation would require an acoustic match for

each phone of each phonetic transcription to be scored

in the course of generating recognition hypotheses.

The idea of using the similarities of acoustic matches

is based on the following observations. We cannot ex-

pect that we will obtain the same acoustic matches

by propagating any di�erent arrays of forward scores.

However, it is reasonable to assume that if two ar-

rays of forward scores are centered at the same time

and are propagated through the same acoustic model,

they will give rise to approximately identical acoustic

matches provided that for some suitable integers l and

r, their two phonetic strings of recognition hypotheses

agree on l look-left phones and r look-right phones.

The above property is referred as look-phone-context

property.

Assuming the look-phone-context property holds,

we do not have to calculate an acoustic match ev-

ery time a phone is to be scored. This is achieved

by constructing a transcription graph which encodes

phonetic transcriptions and the information of multi-

ple segmentations. A path in the transcription graph



is created only if it does not exist and if its cor-

responding acoustic matches are requested to gen-

erate a new recognition hypothesis. The construc-

tion of the transcription graph is using a depth �rst

search and is guided by the language model. Notice

that there is a many-to-one correspondence between

paths through the recognition hypotheses and paths

through the transcription graph. Accordingly, the

acoustic matches encoded in the transcription graph

can be re-used in the course of generating recognition

hypotheses.

2. THE GENERATION OF

RECOGNITION HYPOTHESES

Let us take a look at the details of generating recogni-

tion hypotheses in the second pass. Since the search

space in the second pass is the word graph produced

in the �rst pass, all we need to do is to rescore the

word graph. The speci�cation of the word graph is the

following. A node is labeled by a triple (�t;D; ��) where
�t is a �rst pass time, D is a look-ahead phone string

and �� is a coarse language model state [5]. A branch

joining two nodes is associated with a complete lexi-

cal theory. A lexical theory is a partial transcription

(or a node in the lexical tree) together with a phone

segmentation where it is said to be complete when it

reaches a leaf node of the lexical tree. The word graph

is constructed by using the monotone graph search al-

gorithm [2, 5].

To carry out the second pass search, we de�ne a par-

tial recognition hypothesis to be a partial path in the

word graph together with the information needed to

support scoring with the �ne acoustic phonetic models

and the �ne language models. The partial recognition

hypothesis � is a quadruple (b;E; f�tg; f��g) where

1. b is a branch in the word graph.

2. E is a look-behind phone string.

3. f�tg is an array of forward scores centered on �t

whose width is controlled by the uncertainty �.

4. f��g is an array of language model scores in-

dexed by �ne language model states �.

Suppose b is a branch in the word graph originat-

ing in a node (�t;D; ��) and terminating in another

node (�t0;D0; ��0). Let w be the word label and F

the phonetic transcription of w in the complete lex-

ical theory corresponding to b. We use the branch

b to generate a new partial recognition hypothesis

�0 = (b0;E0; f�0t0g; f�
0

�0g) as follows:

1. E0 is the look-behind phone string de�ned by the

condition that the tail end of DF is E0

D
0.

2. f�0t0g is the array of forward scores centered on �t
0

obtained by propagating f�tg through the phone

string DFnD0 (that is, DF with D0 removed).

3. For each language model state �0 such that

P (w; �0j�) > 0 for some state � in �,

�0

�0 = max
�

��P (w; �0j�):

3. THE LOOK-PHONE-CONTEXT

PROPERTY

The role of the acoustic matching in generating a new

partial recognition hypothesis is to propagate the ar-

ray of forward scores through the phone string of the

corresponding branch in the word graph. This can be

done by consecutively propagating through one phone

at a time. Suppose we have an input array f�tg of for-

ward scores centered on �t with a look-left phone string

L and a look-right phone string R. After propagat-

ing through a phone, we get an output array f�0t0g of

forward scores centered on �t0 with a look-left phone

string L0 and a look-right phone string R0, where �t; �t0

are the �rst pass phone segmentation. We may calcu-

late an array of phone durations fdt0g and an array

of phone scores fst0g centered on �t0. We say the look-

phone-context property holds if the durations fdt0g

and phone scores fst0g are the same for two di�erent

acoustic matches with two di�erent input arrays of

forward scores, but with the same �rst pass segmen-

tation �t; �t0 and the same look-left and look-right phone

strings L;R;L0;R0. Note that in order to ensure the

phone contexts are always available during the proce-

dure, the number of phones in the look-behind phone

string E in the partial recognition hypothesis must be

equal or larger than the number of phones in L, and

the number of phones in the look-ahead phone string



D in the partial recognition hypothesis must be equal

or larger than the number of phones in R.

4. THE TRANSCRIPTION GRAPH

The transcription graph is constructed based on the

assumption that the look-phone-context property ap-

proximately holds for some suitable lengths of look-

left and look-right phone strings. The transcription

graph is de�ned such that there is a many-to-one cor-

respondence between paths through the word graph

and paths through the transcription graph. We spec-

ify a node in the transcription graph by means of a

triple (�t;L;R), where �t is the �rst pass segmentation

and L;R are look-left and look-right phone strings.

The information of multiple segmentations is encoded

on branches. A branch from a node (�t;L;R) to an-

other node (�t0;L0;R0) is associated with an array of

durations fdt0g and array of phone scores fst0g.

The construction of the transcription graph is

guided by the language model, namely nodes and

branches are only created if they do not exist and if

such acoustic matches are requested in order to gen-

erate a new partial recognition hypothesis. We use a

depth �rst search to rescore the word graph. Before

the search starts, we order the branches of the word

graph according to their combining forward and back-

ward scores since that allows us to get the optimal

path earlier [6]. The basic operation of the acoustic

matching is to add a phone to an input array f�tg

and to generate an output array f�0t0g. To score a

�rst pass phone segment (�t;L;R); (�t0;L0;R0), we do

the following in the transcription graph:

1. Create nodes (�t;L;R), (�t0;L0;R0) if they do not

exist in the transcription graph.

2. If the corresponding branch does not exist in the

transcription graph, calculate f�0t0g by propagat-

ing f�tg and keep an array of back pointers on

the entry times fqt0g, then calculate an array of

durations fdt0g and array of phone scores fst0g

and create the branch,

dt0 = t0 � qt0 + 1;

st0 = �0t0 � �q
t0
�1:

3. If the corresponding branch exists, calculate the

output array f�0t0g,

� = t0 � dt0 ;

�0t0 = �� + st0 :

In the course of building the transcription graph, we

also impose envelope pruning. Nodes and branches

are created only when they survive during the prun-

ing. There are two pruning envelopes, one for word

boundaries and another for phone boundaries, which

keep track of the best forward scores for each frame.

Separate thresholds are used against the envelopes

for pruning phones and words since the forward score

used to calculate the word envelope includes the lan-

guage model score. Pruning is also carried out after

�nishing searching a block, in order to prevent un-

necessary recognition hypotheses from passing to the

next block.

Since the nodes and branches in the transcription

graph are created on demand, the transcription graph

only contains the paths required for rescoring the

word graph. On the other hand, since the transcrip-

tion graph contains no language model information,

it allows the second pass search to be nearly indepen-

dent of the size of the language model.

5. EXPERIMENTAL RESULTS

To test the system, we used the Wall Street Jour-

nal (WSJ) speaker-independent corpus with the SI284

training set to train gender-dependent acoustic mod-

els. Acoustic features were calculated every 10 ms

from the 16 kHz sampled data after DC-component

removal. The feature vector consisted of 15 cepstral

coe�cients, 15 delta and 15 delta delta coe�cients,

where a simple mean normalization was imposed on

a �xed window basis. Clustering by using decision

trees was applied for both �rst and second pass mod-

els. VQ models with 3 codebooks and with only right

contexts were used in the �rst pass, where each code-

book consisted of one covariance matrix, 256 means

and a set of distributions. For the second pass, the

acoustic models had 2 codebooks, each of which had

one grand covariance matrix and up to 16 means per

distribution. The clustering was on triphone contexts



as well as high-level knowledge sources, the beginning

and ending of words and function words. After clus-

tering there were about 8,000 output distributions for

each gender. The details of the clustering method can

be found in [4].

The language models were derived from the statis-

tics of North American Business texts provided by

CMU. The vocabulary was chosen such that the

most frequent 30,000 words according to the unigram

statistics intersected with the COMLEX dictionary,

which resulted in 29,533 words. With this vocabulary,

we obtained about 5.5 million bigrams and 6.3 million

trigrams, where count-1 statistics were excluded for

bigrams and count-3 and below were excluded for tri-

grams. We used bigrams in the �rst pass and trigrams

in the second pass.

For the �rst pass search, time quantization was im-

posed to reduce the number of nodes in the word

graph. For lexical access, we used a language model

heuristic, depth �rst search and local envelope prun-

ing, which were shown to be e�cient for large vocab-

ulary applications [3].

We have performed an open-vocabulary test on

the WSJ evaluation set (Nov92-20k-si-nvp) of the

speaker-independent continuous speech recognition

task. The out-of-vocabulary (OOV) rate was 1.2%

with the 29,533-word vocabulary. We have carried

out a contrast experiment to validate the look-phone-

context property and to see the di�erence between the

baseline system and the system with the transcrip-

tion graph. We have not observed any degradation of

recognition accuracy in the 30k-wordWSJ task if two-

phone look-left and two-phone look-right are used in

building the transcription graph. On the other hand,

we increase the speed by about three times for the sec-

ond pass rescoring. The whole system currently runs

in faster than real-time on a Sun workstation (with

clock speed 170 MHz) with a word error rate 11.36%.

6. CONCLUSION

We have presented a new method of using the

look-phone-context property to achieve fast acoustic

matching in the second pass of our speech recognition

system. The sharing of acoustic matches is accom-

plished by constructing a transcription graph which

contains only the paths of phonetic transcriptions re-

quired for rescoring the word graph. Experimental re-

sults suggest that this approximate method is robust

and e�ective for large vocabulary continuous speech

recognition.
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