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ABSTRACT statistical methods of deriving prosody from training
data, combined with the linguistic rules, could be as

This paper presents Mimic : a decision-tree based promising as the use of statistical techniques in speech
concatenative voice adaptive text to esgh recognition. In this paper we introduce and focus on
synthesiser. Mimic integrates text toesph synthesis  the concept of micro-prosody; these are inter-phonetic
(TTS) with speech recogion and speaker adaptation. relations between pitch duration and energy.
Speech is synthesised from concatéean of triphone Voice conversion is another aspect of TTS described
synthesis units. The triphone units are obtained from here. The goal of voice adaptive TTS is to employ a
clusters of training examples modelled, labelled and speech synthesiser in tandem with speech recognition
segmented using clustered HMMs and Viterbi so thatthe system can mimic a speaker’s voice.
segmentation. The prosodic structure of pitch, This paper is organised as follows. First, the design of
duration and energy contours are captured using TTS synthesis unit inventory is described. Then the
statistical training methods. The concept of a decision- prosody model is presented. Next is a description of
tree based statistical micro-prosody model is the voice conversion method, followed by evaluation
introduced as a hierarchical method of modelling and conclusion.
prosodic parameters. The voice adaptation component
involves the adaptation of the spectral parameters as
well as pitch, duration, and energy.
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and personalised-voice for application’s such as aid rigyre 1 - A voice adaptive TTS

for the disabled. A wider application of TTS requires

advances in two areas; (a) improving the prosodic

quality of speech and (b) making TTS voice-adaptive.

Although in recent years there has been significant 2. DESIGN OF TTS SYNTHESIS
improvement in the quality of TTS, their naturalness TRIPHONE INVENTORY

still falls short of that of human speech. This is mainly

due to the lack of natural prosody; the so called superThe speech unit for synthesis is chosen so as to reduce
segmental interrelation  between  concatenated the subsequent signal processing required to improve
segments of speech. The prosodic parameters are théhe TTS quality. The automatic design of the TTS
pitch, duration, energy and stress which itself is a synthesis unit inventory involves the following steps
function of energy and duration. There are basically 1. the choice of the synthesis unit; phone, syllable,
two approaches to the synthesis of prosody; rule base etc.

linguistics methods and statistical methods. The 2. statistical modelling of the synthesis units,



3. labelling and segmentation of the training 3. STATISTICAL MICRO-PROSODY

database, TREE MODEL
4. selecting the best synthesis unit examples from the
many available in the training database. Prosodic parameters span the duration of a word, a

phrase or a sentence, and are used in speech to convey
Speech is modelled with context dependent triphonetonal quality, intention, and meaning [3-6]. Prosodic
units [1]. The use of triphones, in addition to capturing parameters include pitch, energy, and duration, these
the contextual correlation of stessive speech units, parameters are also affected by the level of word stress.
alleviates the distortion effects of any timing errors in The triphone segments in a TTS synthesis unit
unit segmentation process. In general the quality of inventory are taken from various words spoken in
TTS improves with increased contextual resolution. different contexts and sentences, and even in different
Particularly the naturalness of synthesised speechrecording sessions. Hence the sequence of triphones in
improves substantially when different synthesis units a concatenative synthesisedesgh sentence uslly
for word internal and cross word triphones are used. lack the correct interrelation between pitch, loudness,
The first stage in the design of a concatenative TTS isduration and stress. The prosodic parameters need to
the modelling, segmentation and labelling of the be processed to maintain a natural sounding relation
training speech units, and the selection of the bestbetween the prosody of successive triphones. The
examples for TTS inventory. With the 45 phone set of synthesis of the prosodic parameters, due to the lack of
the English BEEP dictionary there are theoretically an effective computational model of prosody, remains
more than 90,000 triphones. Due to phonological the most challenging aspect of the design of TTS.
constraints, many of these do not occur and a total of This section presents the concept of decision tree
about 20000 was observed in training data. A decision- statistical micro-prosody model. Micro-prosody are
tree clustering method is employed to cluster the defined as prosodic relations betweenccessive
triphone HMMs, and to ésnate the models and the phonetic segments. Micro-prosody parameters are
synthesis units for unseen triphones. considered as signals whose states depend on the
The triphone HMMs are then used for the labeling and current and the neighbouring phones, for example the
segmentation of the training data. Speaker dependenfrobability of pitch frequency can be modelled as
HMMs used to segment the samatal on which the  shown in figure2 as
models have been trained yields highly accurate
segmen.tanon and estimation of the timing boundaries p( o AnlAn-1, fon_l)v(}‘n+1'fon+1),5tfes} @)
of the triphones.

In general for each triphone there are a number of .
examples in the training data base. These examples¥here the prosody of a phone is affected by the

are ranked in terms of their power, duration, and their N€ighbouring phones, thier prosodic conditioning and
likelihood from their respective HMMs. The best the Stress.
example for each triphone are selected to form the

triphone inventory. The criterion for selecting the best Phonen-1  Phonen  Phonen+1

. HE prosodic di prosodic
quality segment may be based on maximising . Pt prosode oo
model model model
Xpest = arg max p Oq\ ’fo £ ’d ) (1) Figure 2 A chain model of prosodic feature trajectory.
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For modelling and training of prosodic parameters a
hierarchical decision tree-based prosody clustering
structure is used in which linguistic knowledge and
statistical training methods are combined. At the
the examples with preferred values of prosody |gwest level for each triphone a set of parameters are
parameters. For example the functions of duration andgstimated to maintain the correct ‘micro-prosodic’
energy,f,(d) andf(e), may be selected to favour units  re|ationship between the energy, the duration and the
around or on the positive side of the mean value. pitch of successive triphones in a sentence. For

example for triphonel’ with a left phonetic context of

the probability of a segment given the HMMand
pitch f,, energy e, and durationd. In Eq(1)
xOf(d)n f,(8 n f(f,) selects an intersection of



‘a’ and a right context ofc’, ‘a-b+c’, we estimate phone-dependent ML warping parameter is estimated
triphone level prosodic parameters such as fhitaltj to map the frequency spectrum of the synthesiser’s
energybla,0), and duratiorifla,). For context voice to that of the input voice. A more detailed
dependent parameters the mean and variance of theransformation has a full matrix linear transform for
prosodic parameters and their ratios such eg&,] each triphone. The linear transformation matrices are
ey/e, dy/d,, dy/de, fon/foc, fon/fod] are estimated. estimated using an maximum likelihood criterion. The
These statistics are then used to maintain the correctransforms are arranged in a phonetic-tree cluster
relation between prosody of gwessive triphone units  structure, where the number of transform estimated at
in synthesised speech. each level depends on the amount of training data
from the target speaker.
3.1 Micro-Prosody Adaptation
The mean and variance of the distribution of the 4.1 Voice Spectral Mapping Functions
micro-prosody parameters of the source speakisr The mapping function converts the spectral envelop of
adapted to that of the target speakerusing the the source speaker to that of the target speaker. Using

following relation [7] least squared error optimisation the mapping function
foglbycza f0;|b,c+ B (3) between the source spectruk{w) and the target
spectrumy(w) for thek" speech class is of the form
where the notatiorfo,, . denotes the pitch of the E[Y, (w)]
triphonea within the context of neighbouring phones Y (W) =—— - X, (w) (5)
b andc, and the adaptation coefficientsand 8 are E[ X« ()]
given by
otz The expectation functions are obtained using VQ
o= ?, B=H¢—aHs 4) codebooks of the spectral envelopes of the source and
S

the target speakers.

In [4] a Gaussian mixture model is described for
where y and o denote the context-dependent mean mapping the source spectrum to the target spectrum.

and variance of prosodic parameters. This relation is Extending the mapping function here to context-
used for mapping of pitch, energy and duration dependent phonetic HMMs, ~ with  M-mixture

parameters. Gaussians per state model, the mapping between the
corresponding states of phonetic HMMs yields
4. VOICE CONVERSION Ny Ns M
E[Vix] = z z z R G %0 Al 3lViim+ T i n ( Ko™ H ]
k=1 i=1 mF1
Voice conversion is the mapping of the acoustic space (6)

of one speaker, the source speaker, to the acoustiGynere v y, are the mean of and x, = is the

space of another, the target speaker [3,4,7]. In [3] covariance matrix of andr™ the cross-covariance &f
Abe, .Nakamura etal describe the use Of & Veclorandy. A drawback of Eq(6) is that it needs the cross-
quantiser code book as a one to one mapping function.gyariance of the source and target speakers.

between the spectr.al vectors of the source gnd thean alternative method of spectral conversion is to use
target speakers. This approach was extended in [4] t05 |inear speaker transform as in speaker adaptive
a probabilistic Gaussian mixture mod€MM). In speech recognition as

this paper these ideas are further extended to include Yy, = AX, (7)
hidden Markov models (HMMs) of context-dependent

triphones. The factors that affect the voice Where the linear transformation is a full matrix. The
characteristics of a speaker are gender, age, prosodi&olution forA can be obtained using a least squares or
parameters and accent. Gender and age effect thé probabilistic optimisation. Eq(7) can be extended to
vocal tract size and characteristics and also the pitch@ decision tree structure of matrix transforms, where
frequency. The simplest method for speaker the number, and contextual resolution of transforms
adaptation involves frequency warping in which, increase as more data becomes available.

given set of phonetitiMMs, for the input spech a
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Figure 3 A block diagram illustration of pitch estimation system.
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Figure 4 An original signal 'Then four months', the pitch mark
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sequence, the synthesised signal and its spectogram.

5. EVALUATIONS

The data base used for the initial training of Mimic is
six hour recording of a person’s voice speaking in a
natural clear conversational manner. Theesh is
modeled using context dependent triphone HMMs. For
HMM training speech is segmented into frames of 25
ms length with 10 ms overlap between successive

frames, and each frame is represented by 13 cepstral

coefficients and the first and second derivatives.
Decision tree clustering is used to limit the number of
triphone HMMs to about a tal of 9000 word internal

and cross-word triphones and to synthesis the unseen

triphones. A decision tree clustering method was also

used to model the space of the prosody parameters. To

derive prosodic models estimates of duration, energy
and pitch frequency are needed. The pitch frequency
and the rate of change of pitch for each phone was
estimated using a closed loop harmonic analysis
system shown in figure 3.The speech units for the
synthesis inventory are selected to reduce the

subsequent signal processing steps needed for higHG]

quality synthesis. The distance from th&Ms and
prosodic models are used to rank and select the bes
speech units.

For text to speech synthesis, the text is first analysed
and then synthesised using the inventory and the

prosody model. The prosodic parameters of speech are

modified using a harmonic synthesis model of speech

segments. We asked our colleagues and visitors to our
lab to compare the quality of TTSegzh produce by
Mimic against those of high quality TT8a@essible on

the internet. Mimic, without any manual intervention
and tuning in its synthesis unit selection, was
perceived to be as good as, and in many cases better
than, those TTSs it was compared with. Particularly
impressive is the ability of Mimic to retain good
micro-prosodic aspects of the speech sound.

6. CONCLUSION

This paper introduced Mimic a voice adaptive
decision-tree based context dependent TTS, that
integrates speech recagon, text to spech synthesis
and speaker adaptation. The concept of a tree based
context dependent statistical micro-prosody model was
presented. This model captures the statistical
correlation of synthesis segments at phonetic level.
The paper also described methods of speaker
adaptation that more closely integratesees
recognition and synthesis.
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