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ABSTRACT

Experiments have been carried out to assess the feasibil-
ity of detecting target speaker segments in multi-speaker
broadcast databases. The experimental database consists
of NBC Nightly News broadcasts. The target speaker is
the news anchor, Tom Brokaw. Gaussian mixture models
are constructed from labelled training data for the target
speaker as well as background models for other speakers,
commercials, and music. Four labelled 30-min. broadcasts
are used for testing. Mel-frequency cepstral features, aug-
mented by delta cepstral features are calculated over 20
msec. windows shifted every 10 msec. through a broad-
cast. Likelihood ratio scores are calculated for each test
frame averaged over blocks of frames with a speci�ed du-
ration. The block scores are input to a detection routine
which returns estimates of target segment boundaries. The
range of best results obtained over the test broadcasts is
82% to 100% detection of target segments with segment
frame accuracy ranging from 86% to 95%. 0 to 2 false
alarm segments are detected over each 30 min. broadcast.

1. INTRODUCTION

As more and more multimedia databases are digitized and
stored in accessible archival �les, the need grows for e�ec-
tive ways to search and retrieve useful information from
them. For the speech portions of such databases, a useful
search key, in combination with such keys as words and
topics, is speaker identity. This paper reports on experi-
ments carried out to assess the feasibility of detecting tar-
get speaker segments in multi-speaker broadcast databases.
The experimental database consists of NBC Nightly News
broadcasts. The target speaker is the news anchor person,
Tom Brokaw. The underlying application is to segment
a news broadcast into individual news stories for further
segmentation and/or browsing. The premise is that each
news story is introduced by the anchor person. Thus de-
tecting anchor person segments in the broadcast helps to
locate the beginning of each news story.

Speaker detection of a single target speaker can be con-
sidered a generalization of the speaker veri�cation task. In
speaker veri�cation, a speech sample is provided which is
claimed to be generated by the target speaker. The task
is to decide whether or not the claim is valid. In speaker
detection the sample to be processed is a sequence of audio
segments. Each segment may contain speech from the tar-
get speaker, speech from another speaker, audio data from
a variety of sources such as music, mixed speech and music,
noise, and also silence. The target and other speaker seg-
ments may be contaminated by the presence of noise and
music. The task is to locate target speaker segments in the
data by providing estimates of the start and end times of

each such segment.
A number of other studies have been reported, e.g.

[4, 5, 6, 3, 1], on various speaker segmentation and identi-
�cation tasks in multi-speaker databases, with both unsu-
pervised and supervised training conditions. For the cur-
rent application we assume that labelled training data is
available for the target speaker, for other speakers, and for
other types of audio data present in the broadcasts such
as commercials, music, and noise. Our approach is to con-
struct Gaussian mixture models to represent the speech of
the target speaker as well as background models. Back-
ground models are constructed for speakers other than the
target, for commercials (mixed speech and music), and for
music only. A detection routine provides estimates of tar-
get speaker segment start and end times making use of a
likelihood ratio score calculated frame by frame through a
test sample.

2. DATABASE

The experimental database consists of 17 half-hour broad-
casts of NBC Nightly News recorded o� the air from Jan-
uary to March 1998. 13 broadcasts are reserved for extract-
ing data for training while the last 4 are used for testing.
The broadcasts were recorded digitally, digitized at a 16
kHz sampling rate into 16-bit PCM samples. The digi-
tized audio data is manually labelled and segmented ac-
cording to the following categories: target speaker, other
speaker, commercial, music, noise, and silence. Additional
descriptions are provided for each segment including the
gender and identity of the speaker (where possible), and
assessments of recording source (such as studio, on site,
telephone) and quality.
Table 1 summarizes the segment statistics for the four

test broadcasts. Note that test broadcast number 3 con-
tains no target speaker segments. A substitute anchor per-
son (female) was used in place of Tom Brokaw for this
broadcast. Roughly speaking, in the other three broad-
casts, target speaker segments account for 18% of the to-
tal, other speakers for 50%, and commercials for 25%. The
remaining 7% of the segments are labelled either music,
noise, or silence, with music predominating among these
minor categories. There are 15 or 17 target speaker seg-
ments in each broadcast ranging in duration from 3 to 67
secs with an average duration of 20 secs.

3. AUDIO PROCESSING

The digitized audio data �les are converted to 12th order
cepstral coe�cients by carrying out a DCT on the output
of 31 mel frequency spaced �lters. The analysis windows
are 20 msecs in duration spaced every 10 msec through each
�le. The cepstral features are augmented by 12 delta cep-
stral features calculated over 5-frame windows. Included in
the analysis is a measurement of energy which is converted



test broadcast number
1 2 3 4

DURATIONS
target 339.4 315.9 | 282.6
other speakers 945.2 856.6 1234.4 787.7
commercials 424.4 418.8 484.1 442.6
music 63.5 122.9 58.6 50.2
noise 6.1 58.9 1.0 45.8
silence 17.7 24.5 19.4 19.7
TOTAL 1796.3 1797.6 1797.6 1628.7

TARGET SEGMENTS
number 15 17 | 15
min duration 6.7 3.1 | 4.9
max duration 66.8 53.3 | 44.3
avg duration 22.6 18.6 | 18.8

Table 1. Test broadcast �le segment statistics (in
secs)

to a peak normalized log energy where the peak energy is
calculated over the duration of the �le. All data frames
falling below a speci�ed energy threshold are omitted in
subsequent processing. The energy threshold is set at 30
dB below peak.

4. MODELLING

The target speaker and background speakers and other
background audio categories are represented by Gaussian
mixture models (GMM's) with diagonal covariance matri-
ces. Gaussian mixture models are commonly and e�ec-
tively used in text independent speaker recognition [2]. All
the models for these experiments are constructed with 64
mixture components.
Descriptions of the experimental models are shown in

Table 2. The table entries show the number of training seg-
ments used to construct the model, the total and average
duration of the segments, and brief notes. The number of
training vectors represents approximately a 10% to 20% re-
duction from the actual duration due to energy threshold-
ing for the speaker models. The following should be noted
about the content of the speaker models. Brokaw2 contains
all the training segments used in Brokaw1. The Brokaw1
segments are generally labelled as mostly \clean", whereas
the additional segments included in Brokaw2 contain some
interfering speech, noise, and/or music background. About
half of the speakers in Back1 are correspondents and the re-
mainder, interviewees. Almost all of the speakers in Back3
are interviewees. The quality of the speech for intervie-
wees is generally poorer than for correspondents. Four of
the correspondent speakers in Back1 are also found in two
of the test broadcasts. As far as can be determined, none
of the speakers in Back3 are contained in Back1, and other
than the correspondents noted, none of the Back1 or Back3
speakers are contained in test broadcasts.

5. SCORING AND TARGET SEGMENT
DETECTION

Scoring a test sample proceeds as follows. Let
x1;x2; : : : ;xN be a sequence of feature vectors representing
an audio test sample. Let �T be the target speaker GMM
and �B1

; �B2
; : : : ; �BK be a set of background GMM's. Log

likelihood scores are computed for each frame t of the fea-
ture vector sequence with respect to the target model and
the background models as follows:

st(�T ) = log p(xtj�T ) (1)

st(�Bk) = log p(xtj�Bk); k = 1; 2; : : : ;K (2)

model no. of total/avg. notes
name segs. seg. dur.

(secs)

TARGET:
Brokaw1 7 133/19.0 4 broadcasts
Brokaw2 13 267/20.5 8 broadcasts

BACKGROUND:
Back1 20 275/13.8 9m, 11f speakers
Back3 23 270/11.7 13m, 10f speakers
Back1+3 43 545/12.7 22m, 21f speakers,

sum of Back1 and
Back3

BackComm1 20 468/23.4 commercials
BackMusic1 5 63/12.6 music

Table 2. Experimental model descriptions

where p() is the Gaussian mixture probability density func-
tion. Successive frame scores are averaged over blocks ofM
frames shifted every L frames through the sample. Thus,
the j-th block score for the target model is given by

Sj(�T ) =
1

M

MX

m=1

stj+m(�T ) (3)

A likelihood ratio calculation between the target and back-
ground block scores produces a normalized score:

Sj(�T ;�B1
; : : : ; �BK ) = Sj(�T )�max

k
Sj(�Bk ) (4)

Normalized scores are input to the detector to obtain es-
timates of the starts and ends of target speaker segments.
The detector operation is based on the normalized score
passing a double threshold test (in e�ect, a sequential de-
cision test) to mark both the start and end of a target
segment. Following is a fragment of program code (writ-
ten in C) to describe the operation.

cand = 0;

seg = 0;

block = 0;
while (block < Nblocks) {

if (cand == 0 && score[block] > th0) {

tentstart = block;

cand = 1;

}

if (cand == 1 && score[block] > th1) cand = 2;
if (cand == 1 && score[block] < th0) cand = 0;
if (cand == 2 && score[block] < th0)
tentend = block;

if (cand == 2 && score[block] < th2) {
start[seg] = tentstart;

end[seg] = tentend;
seg++;

}
block++;
}

The thresholds are th0, th1 and th2. In these ex-
periments th2 is set equal to -th1 and th0 < th1.
score[block] is the normalized score for the current block.
seg is the target segment counter. cand is a 
ag indicating
the current status of a proposed target speaker segment.
An example of the output of the scoring and detection

processes is shown in Fig. 1. The normalized score is shown
as a function of time with each point plotted indicating a
block score. The dashed vertical lines show actual seg-
ment boundaries while estimated target segment bound-
aries are indicated by the solid vertical lines. All the seg-
ments shown in this example are speaker segments. The
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Figure 1. Normalized score in a portion of a
test broadcast showing actual segment boundaries
(dashed vertical lines) and estimated target seg-
ment boundaries (solid vertical lines). The \T" la-
bels indicate target segments; other labels indicate
other speakers.

"T" label indicates a target speaker segment; "C" and "A"
indicate correspondent and announcer segments; "P" indi-
cates interviewee segments.

6. PERFORMANCE MEASUREMENTS

Two types of performance measurements are used in the
experiments reported here. The �rst is based on the num-
ber of test frames correctly segmented. (Although seg-
mentations are speci�ed in terms of frames they are actu-
ally calculated by blocks so that segmentation resolution is
equal to the block shift.) The second is based on the num-
ber of segments correctly labelled. For frame segmentation
performance, two error rates are calculated. The �rst, the
Frame level MIss Rate (FMIR), is the fraction of actual
target frames not included in estimated target segments.
The second, the Frame level False Alarm Rate (FFAR),
is the fraction of non-target frames included in estimated
target segments.
Segment level performance is calculated as follows. A

threshold fraction of frames correctly detected in a target
segment is speci�ed, denoted FCD. If the estimated frac-
tion of frames correctly detected exceeds FCD, the seg-
ment is considered to be a \hit". If an estimated seg-
ment contains no target frames, the segment is consid-
ered a false alarm. Also, if an estimated segment contains
more than one target segment, the excess number counts
as false alarms. For example, if an estimated segment in-
cludes 2 target segments, it seems reasonable to count the
non-target interval between the target segments as a false
alarm.
Although these performance measurements are not com-

pletely satisfactory, particularly with respect to de�ning
segment false alarms, they are consistent and logical and
lead to useful measures of performance.

7. EXPERIMENTAL RESULTS

Experimental performance is evaluated by scoring and es-
timating target speaker segments in four 30-minute test
broadcasts. The test broadcast segment statistics, based
on manual labelling, are shown in Table 1. Only non-
target performance is measured for test broadcast 3 since,
as noted earlier, it contains no target speaker segments.
Performance is measured as a function of the follow-

ing experimental variables, choice of target speaker model,
choice of speaker background model, the number and con-
tent of background models, and the upper detection thresh-
old, th1. The following experimental variables are held
�xed: the number of mixture components (64), the con-
tent of the commercial and music background models, the
energy threshold (30 dB below peak), the block shift (20
csecs) and block window size (120 csecs), and the lower
detection threshold th0 (0).
Representative frame level error rates are shown in Fig. 2

as a function of th1 for the four test broadcasts. The target
model used is Brokaw1 and two background models, Back3
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Figure 2. Frame based error rates as a function
of th1 using target model Brokaw1 and background
models Back3 and BackComm1

and BackComm1 are used. The frame error measurements,
FMIR (target frame miss rate) and FFAR (non-target de-
tection rate) are plotted. As th1 increases detection accu-
racy can be expected to increase while the number of de-
tected segments decreases. Both these trends imply that
FFAR should decrease monotonically, which is more or less
the case for each test broadcast. The behavior of FMIR is
more complex. FMIR should decrease with increasing th1
as detection accuracy increases. However, sharp jumps in
FMIR may occur when th1 increases enough to miss an en-
tire segment. This is the behavior seen in the �gure where
the typical pattern of falling FMIR followed by sharp jumps
repeats until th1 reaches a level su�cient to miss all target
segments when FMIR increases to 100%.
For a fairly broad range of values of th1 between 1.8

and 2.2 the sum of FMIR and FFAR is roughly minimized.
These values of FMIR and FFAR can be used to compare
the overall performance for each test broadcast. It can be
seen that test broadcast 1 has the best performance with
FMIR approximately 5% and FFAR 1%, test broadcast 2,
the worst with FMIR approximately 14% and FFAR 7%,
and test broadcast 4, FMIR about 8% and FFAR about
1%. A FMIR of 10% translates into a segmentation error
of 2 secs for a target segment with the average duration of
20 secs. There are no target segments in test broadcast 3,
but it has the lowest FFAR, essentially 0 in this threshold
region. The overall balance between FMIR and FFAR can
changed somewhat by adjusting th0.
Performance variations associated with selections of tar-

get and speaker background models and the number of
background models are illustrated in Table 3 for test broad-
cast 1. The performances shown are obtained by adjusting
th1 to obtain the minimum sum of FMIR and FFAR er-
ror. In some cases th0 was also varied in an attempt (not
always successful) to make the FMIR values as consistent
as possible from one condition to another. The number of
background models is varied from 1 to 3. The commercials
and music background models are not varied.

In addition to FMIR and FFAR, segment level perfor-
mance �gures are shown. These are the number of target
segment hits with FCD set to 80% and the number of seg-
ment false alarms.
Consider �rst the e�ect of adding background models in



target spkr FMIR FFAR sum mi's fa's
back (%) (%) (%) (15)

speaker background only
Brokaw1 Back1 4.3 7.8 12.1 0 4
Brokaw1 Back3 4.3 2.5 6.8 0 0
Brokaw1 Back1+3 7.8 4.2 12.0 1 2
Brokaw2 Back3 4.1 7.0 11.1 0 6

speaker background + BackComm1
Brokaw1 Back1 5.2 1.2 6.4 0 1
Brokaw1 Back3 4.8 0.8 5.6 0 0
Brokaw1 Back1+3 5.6 1.3 6.9 0 0
Brokaw2 Back3 4.0 4.7 8.7 0 3

speaker background + BackComm1 + BackMusic1
Brokaw1 Back3 4.6 1.2 5.8 0 0

Table 3. Performance comparisons for di�erent se-
lections of target and background speaker models
for test broadcast 1. The target seg hit criterion,
FCT, is set at 80%. There are 15 target segments.

addition to the speaker background model. For each com-
bination of target and speaker background model, there is
a sizeable reduction in overall error rate from the speaker
background only condition to the condition in which a com-
mercials background model is added. However, the further
addition of the music background model produces no ad-
ditional improvement. The performance improvement ob-
tained with the addition of the commercials background
model is mainly associated with a reduction in FFAR and
segment false alarms.
The selection of a speaker background model is com-

pared using Back1, Back3, and Back1+3 models together
with the Brokaw1 target model. As noted earlier, the
speakers in Back1 are both correspondents and intervie-
wees, while the speakers in Back3 are almost all intervie-
wees. Back1+3 is made up of all the training segments in
Back1 and Back3. Back3 is seen to perform better than
Back1. Only for test broadcast 2 does Back1 perform bet-
ter than Back3. This may be because 2 of the correspon-
dents in test broadcast 2 are also included in Back1. Us-
ing Back1+3, containing all training segments contained
in Back1 and Back3 does not provide any improvement
over using Back1 or Back3 alone. In fact, it performs only
marginally better than the worse performing model, Back1.
Target model selection is compared using Brokaw1 and

Brokaw2 target models in combination with Back3 as the
speaker background model. Brokaw2 contains the 7 train-
ing segments found in Brokaw1 plus 6 additional seg-
ments. Since Brokaw2 contains about twice as much train-
ing material as Brokaw1 it might be predicted to provide
some improvement. In fact, Brokaw2 performs worse than
Brokaw1. The degradation might be attributed to the fact
that many of the additional segments contained in Brokaw2
are not \clean". They contain contaminants from the ad-
dition of speech or noise to the target speaker speech. It
seems likely that a \clean" target model is necessary to ac-
curately detect target speaker segments against such con-
taminants.

8. CONCLUSION

The experimental results are shown summarized in Table 4
for the best experimental selections of thresholds and mod-
els. The selected models are Brokaw1 and Back3 except
for test broadcast 2 which uses Brokaw1 and Back1. At
the segment level of performance, the fractions of target
segments misssed, using an 80% FCD threshold, are 0/15,
3/17, and 1/15 for test broadcasts 1, 2, and 4 which target
speaker segments. The number of false alarm segments for
each half-hour test broadcast is 0 except for test broadcast

test FMIR FFAR sum misses fa's
broadcast (%) (%) (%)

1 4.8 0.8 5.6 0 0
2 13.8 2.3 16.1 3 1
3 { 0.0 { { 0
4 7.6 1.2 8.8 1 0

Table 4. Performance for each test broadcast for
the best combination of target and speaker back-
ground model and the best threshold condition.

2 which has 1.
We conclude that although the precision with which tar-

get segments are detected is not especially high (measured
by FMIR), the number of target segments detected is high
and the number of false alarms is low. Thus overall per-
formance is quite satisfactory for the intended application
which is locating anchor person segments in news broad-
casts for browsing and indexing.
The variations in performance from one test broadcast

to another are somewhat surprising. In particular, the rel-
atively high FMIR rate for test broadcast 2 is unexplained.
There does not seem to be any obvious reason for the 2 or
3 persistently missed target segments in this broadcast.
The requirements for good target and background mod-

els are not completely understood. In most speaker recog-
nition applications including more training data in the
models improves performance. Our experiments suggest
that the content of the training data is at least as impor-
tant. We have seen that detection performance is sensitive
to the presence of \contaminated" training data in the tar-
get speaker model. Also, no improvement in performance
is observed using a speaker background model with twice
as much data as the best performing model which includes
the data used in that model.
Further studies in speaker detection will include more

than one target speaker in broadcast databases and de-
tecting speakers in a teleconference database.
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