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Unvoiced plosives (/p/, /t/, /k/) have dynamic spectral

ABSTRACT feature from explosive parts to the following vowel. Difference

) _ _ ) in explosive part spectrum and dynamic features near
We present constrained time alignment acoustic models basgghsitional part is the effective cue for /p/, /t/, /k/ identification.
on phonetic knowledge and a speaker independent speechyiced plosives (/b/, /d/, /g/) have dynamic spectral feature
recognition method using our proposed models. Japangsgm pre-voicing section to explosive part toward the following
syllable and isolated word recognition experiments show that thgye.
models have robustness to intra- and inter- speaker varieties Nasals (/m/, In/, Ingl) have dynamic spectral feature from
such as acoustic diversity. Furthermore we experiment Withhsals murmur to the following vowel. The manner of
word recognition tests under the condition such as noisgticylation of nasal to the following vowel is the same as that of
environments and endpoints free matching, it reveals thgosive case, and /m/ manner is the same as that of as /b/ and /p/

feasibility of our proposed models. case. Similarly, /ng/ is the same as /g/ and /k/ case and also /n/ is
the same as /d/and /t/.
1. INTRODUCTION Though it's difficult to specify an exact discriminative

Recently, on speaker independent speech recognition, m@gime for unvoiced fricatives (/h/, /s/) due to their long
approaches use hidden Markov model to absorb that intra- ag@tionary spectral features, we employed the same rule as the

inter-speaker variability. These approaches assume thather consonants that discriminative frame is located at the end
appropriate acoustic models can be trained automatically wigf the phonemes.

the time structure of given training speech data.

On the other hand, a phonetic subject about which tempor Table 1: Our Definition of Phoneme Discriminative Frame
part of acoustic features can be cues for the identification of Phonemes| Phoneme discriminative frame
phonemes have been studied independently. Coepeal c,p,tk Explosive part
indicated that dynamic spectral features had phonemq g, b, d,r, z] End of pre-voicing section / Explosive pajt
discriminative information [1]. Furthermore, Il@ al showed m, n, ng Dynamic feature following vowels
that explosive part was especially valid for identification of | h, s End of phoneme
plosives and dynamic features near transitional part was fof j, w Begin of phoneme

nasals [2]. Also we have proposed the effective speech ]

recognition methods for plosive consonants and consonants@f2. New Acoustic Models

word-head and word-body [3-5]. All these researches showdbe propose new acoustic models emphasizing dynamic spectral

that dynamic features around explosive parts or followingeatures near phoneme discriminative frame.

vowels have phoneme discriminative information. Clues for the identification of phonemes are found not only
Therefore, we assumed that a speech recognition methiddthe exact phoneme discriminative frame but also its neighbor

using such phonetic knowledge should have strong robustneséregnes including dynamic features. Therefore we propose new

intra-and inter-speaker variability [12]. acoustic models for dynamic spectral features where the time
structure is presented with constrained time alignment near
2. PROPOSITION of NEW METHOD phoneme discriminative frame.

We propose to employ constrained time alignment into acoustic SPeaking speed effects the variability of phoneme duration.
models. The constrained time alignment is based on phonelit general, to handle the variability of speaking speed, DP
know|edge SUCh as phoneme. A speech recognition method W@tChlng or phoneme duration Control technique iS Used. T|me
discuses here is based on syllable acoustic models, DP matctitgnment technique such as DP matching is employed all over

and statistical distance measure. the speech segments whichever is a consonant or a vowel. In
. ) L. . such a time-alignment mechanism, duration information of each
2.1. Definition of Discriminative Frame phoneme tends to be missed. But phonetic researches so far

We describe phonetic knowledge on which the proposeslearly show that variation in duration exists dominantly in

acoustic models are based, and then discriminative frames {@Jwel acoustically stationary part. In contrast, little variation in

each phoneme are defined as folloWal{le 1). duration is observed in transition part from a consonant to a
following vowel. Furthermore, dynamic features in this



transitional part are reported as effective for identification of thel and L2 are defined by phonetic knowledge dependent on
proceeding consonant. Therefore DP matching is effective phonetic categories.
vowel parts, but not in consonant. Phoneme duration control When training Japanese phonetic model of /ba/ from a lot of
technique is proposed for this problem. But it is difficult tosamples, successive frames with constant length are simply
control it suitably for the variation of the dynamic spectrahveraged without any time alignment and the rest part of a
features. sample other than the successive frames are time aligned using
To solve such a difficult problem, we applied the phoneti®P technique.
knowledge concerning discriminative frame in temporaR.3.2. The Distance MeasuréNe use the distance measure
structure of speech utterance into our speech recognition methoalsed on Bayes’ theorem for DP matching. Here each state of
More precisely, we think a robust speech recognition algoriththe model is assuming a Gaussian distribution with a mean value
is attainable through designing phonetic models witlof feature parameters including static and dynamic acoustic
constrained time alignment conditions based on such phonegtiarameters and its full-covariance matrix, provided that
studies. Dynamic spectral features near the discriminative frarnevariance value between static and dynamic parameters can be
are effective for identification and robust for the intra- and inteneglected.

speaker variability. We propose acoustic models for consonarIEI] _ ( )t ( )
where time structure is prohibited self-loops and skips oveMij — Xi _/Jj Wj—l X; _F’j +|09’V\/j‘ @

successive near frames of discriminative frame. And also we W, W, 0
propose acoustic model for vowel where time structure is 0 11 In 0
allowed to extend and shrink. With these mechanisms in models 0 : CEP : 0 0
training and recognition testing, proposed acoustic model are

expected to statistically absorb the variation of durationy — Han Win O
information. ! S Aw,, Aw,, EGZ)
2.3. Example of Newly Proposed Models O 0 . ACEP O
We propose the word recognition method using new acoustic

models with constrained time alignment near phoneme H AWnl Aw, nH
discriminative frame. X, . Afeature parameter vector of input speech détame

2.3.1. Japanese Syllable Acoustic ModeM/e propose new
acoustic models of Japanese syllables. Syllable models wergl; - Mean vector of a referengdrame
trained from isolated word speech data. The training data w.
labeled for phoneme endpoints and phoneme discriminativ

frames by labeling experts. . . The equation (1) indicate the distance between an input speech
A syllable model for word head is prepared as different ONe_ = frame and a reference frame

from that for word body. The selection of the discriminative2 o .
. . . .3.3. Word Recognitionin word recognition, we make word
frame of each sample is carried out based on hand labeling. . S
models by concatenating syllable models. When DP matching is
carried out along input speech axis basis, time alignment is

- Covariance matrix of a referengérame (equatiorf2))

Label |bbbbbbbbbbbbbbaaaaaaaaaaaaaapaaag prohibited over the successive frames near the discriminative
Phoneme discriminative frame frame.
\/ 3. EVALUATION EXPERIMENTS
A We show the validity of the proposed acoustic models through
Powe % \ two evaluation experiments. One is syllable and isolated word
' D recognition tests under endpoints-fixed conditions. This
op p' am:consna'”e. 5p experimental result shows the validity of our proposed models
.<J-C—H that constrain time alignment near phoneme discriminative
frame. And the other is a large vocabulary word recognition test
in real-time on such a PC where noisy speech data was evaluated
under endpoints-free conditions.
1 L2 3.1. Experiment with Endpoints Fixed
. ) 3.1.1. Syllable Recognition TestWe compare the efficiency of
Figure 1. Proposed acoustic model (Ex. /ba/) three sets of acoustic models to prove the validity of the

_For instanceFigure 1 shows how Japanese syllable /ba/ ig,rqn0sed acoustic models. We used syllable test data that are
trained in our newly proposed model. An explosive frame of thg,jected by hand labeling experts from word test data. We show
phoneme /b/ is selected as the discriminative frame. Then a Pifs experimental result divided into three groups of syllable
defined number of successive neighbor frames of thgq,ding voiced consonants  (/m/,/n/,Ingl,/bl,idl Il z]),

discriminative frame including transitional part toward thq.lnvoiced p|OSiVeS (/C/,/p/,/t/,/k/) and unvoiced fricatives
following vowel /a/ is segmented. The detail rules of th?/z/ Ihi Isl).

segmentation such as Lc (the length of the successive frames),
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1) Experimental conditions S%"éable Recognition rate (%)

Acoustic models (1) are trained by samples whose frames are all 4

subject to time alignment using DP techniquéggre 2) 80 |
between labeled endpoints. @) @) (3

Acoustic models (2) are trained by samples whose exact 75 |
discriminative frames are aligned and two DP matching sessions| 79 Voiced unvoiced plosives _unvoiced

are carried out before/after the discriminative frames between

labeled endpoints and the discriminative frantgguyre 3). Figure 5: Syllable recognition rate

Acoustic models (3) (the proposed models) are trained by CO”SSO”a”t Recognition rate (%)
samples, which have labels of both endpoint and discriminative 90
frame and successive part nearby the discriminative frame
without time alignment. The rest of frames before or after the | 8°
successive part are time aligned using DP technigigeire 4). 80 ——
Discriminative Discriminative 75 Voiced unvoiced plosives unvoiced
Start Epd Star frame En Start frase En Figure 6: Consonant recognition rate
Vowel Recognition rate (%)
96
94 [
92
90 [
DP matching DP DP DP _ bp 88 I
Successive part 86 Voiced unvoiced plosives unvoiced fricatives

Figure 2: models(1)Figure 3:models(2)Figure 4:models(3) Fiqure 7: Vowel recanition rate

When testing, syllable endpoints are given by label informatior.1.2 Word Recognition TestUsing three syllable models
but location of phoneme discriminative frames is unknowmnmade in 3.1.1., we experiment a large vocabulary word
Continuous DP was carried out, where starting point was fregcognition test.

between seven frames from three frames ahead to three frampgxperimental conditions

behind of the labeled start frame and end point was fregable 3 shows the condition of experiment with three acoustic
Slmllarly Table 2 shows the condition of experiment. WOI’dSmode|s_ The models were trained from Japanese phoneme_
and speakers of the test data differ from the training data. ~ palanced 36,820 words uttered by speakers of both genders.
When testing, endpoints are fixed. 100 words set each uttered by

Table 2: The condition of experiment
L Xper 25 male and female speakers were evaluated. The vocabulary

Acoustic Analysis 12kHz sampling, 10ms frame size for recognition test was 5,168 words
Training data phoneme-balanced 32,580 word ' '
Test data phoneme-balanced 4,240 words Table 3: The condition of experiment
. . . Acoustic Analysis | 12kHz sampling, 10ms frame
2? Experimental result anc_i discussion L . Training data Phoneme-balanced 36,820 words
Figures 5to 7 show experimental results divided into groups Test data 100 city names uttered by 50 subjefts
syllable including voiced consonants, unvoiced plosives arlc\/ocabulary Size 5168 words

unvoiced fricatives.
Figure 6 shows that for all groups models (2) are more) Experimental result and discussion

effective for consonant identification than models (1). Thigable 4 shows the experimental result of word recognition
result indicates that (1) can’t estimate dynamic spectral features

sufficiently. Furthermore models (3) (the proposed models) are Table 4: 5,168 word recognition rate (%)

more effective for consonant identification than (2). This result Mean Worst
indicates that (3) can estimate dynamic spectral features npanodels (1) FEIG. 2) 88.80 64.0
phoneme discriminative frames sufficiently. On the other hanfimodels (2) FIG. 3) 90.18 70.0
for unvoiced fricatives group, (3) is as effective as (2). ThisModels (3) (FIG. 4) 91.02 73.0

result shows that models for unvoiced fricatives does not need to » ) )
consider the successive part, because the spectrums of /s/ and /h}Vith the traditional syllable model [6], which was trained

are stationary and the duration of /s/ and /h/ is highly variab4th free time alignment over whole frames in sample speech
similarly as vowel. data, mean recognition rate 88.8% and worst speaker’s accuracy

Figure 7 shows that, for all groups, (2) and (3) are leskate 64.0 % were obtained. On the other hand, our proposal

effective for vowel identification than (1). This result indicatedn0dels which were trained under constrained time-alignment
that (2) and (3) use fewer frames for vowel than (1). condition, mean recognition rate 91.0 % and worst speaker’s one

Consequently even with less efficiency in vowel73:0 % were obtained. Therefore, the validity of the proposed
identification, Figure 5 shows the validity of our newly models was proved with the improvement of accuracy of 2.2 %

proposed acoustic models over the syllable recognition. in mean recognition rate and 9.0 % in the worst speaker
recognition rate.



3.2. Experiment under Noisy Environments  2) Experimental result and discussion

We prove the validity of the acoustic models with constraine§@Pleé 6 shows the mean recognition rate of 5,168 words
time alignment near discriminative frame under nois)yeco_gnltlon test. In experiments for 4 test data sets, mpdel Y
environments. First, with proposed acoustic models, we develptained more accuracy than model X. Boc d sets, which

a large vocabulary word recognition method, which works i¥/ere noise open test data, recognition method using model Y
real-time on such a PC. Next, we evaluate this method throuljigréased in the accuracy of 0.8% - 5%, alsoafaets which

the experiment with several additional noise at 20dB S/N rati§@s noise closed test data, using model Y, the increase in the
under endpoints free condition. accuracy of 1% was obtained. Under noisy environment, the
3.2.1. Introduction of Word Spotting and Beam Searciwe  Validity of our proposed models trained from data with
introduce word spotting and beam search into the worddditional several noise, was proved with these results

recognition method using the proposed acoustic models. Table 6: 5,168 words recognition rate

Consid_ering using the recognitipn system based on the_ propoged Test data sets (recognition rate(%})

acoustic models under practical environments, noisy inppt

speech and spontaneous speech have to be handled. Ward a b ¢ d

spotting technique is effective such input speech because pregiseodel X (1 noise)| 89.26| 88.04 78.6b 8240

speech segmentation is not necessary. model Y (5 noise)] 90.22] 88.8 83.6B 85.Q0
But introducing word-spotting technique, in order to

compare the likelihood of words calculated from different 4. CONCLUSIONS

speech segments, we must alter the likelihood of each framgthis paper we proposed constrained time alignment acoustic
considering a posterior probability according to Bayes’ theorerodels based on phonetic knowledge and a speech recognition
And in order to decrease calculation so that it works in real-tim@ethod using our proposed models. The validity of the proposed
on such a PC, we introduce beam search technique that vi@®ustic models was proved with the Japanese syllable and

indicated the effectiveness on DP-matching [7-9]. . isolated word recognition experiments show that the models
We developed a large vocabulary word recognizer anflave robustness to intra- and inter- speaker varieties such as
reported the validity of new acoustic models on a PC [11].  acoustic diversity. Next we experiments with a large vocabulary

3.2.2. Word recognition test We experiment with word word recognition method using our proposed models, which
recognition test to prove the validity of our proposal acoustigorks in real-time with beam-search technique, under the
models under noisy conditions. condition models such as noise environments and endpoints free

1) Experimental conditions matching. It revealed the practicality of the proposed acoustic
Table 5 shows the experimental conditions. To test noisghodels.

robustness, we compared two models trained from two different |n future, we will study to apply the proposed acoustic

additional noises. One was the models trained from phonemgodels to HMM.

balanced 36,820 words data with additional only exhibition hall

noise at 20dB S/N ratio. The other was the models trained from 5. REFERENCE
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