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ABSTRACT

A new algorithm to reduce the amount of calcula-

tion in the likelihood computation of continuous

mixture HMM(CMHMM) with block-diagonal co-

variance matrices while retaining high recogni-

tion rate is proposed. The block matrices are

optimized by minimizing di�erence between the

output probability calculated with full covariance

matrices and that calculated with block-diagonal

covariance matrices. The idea was implemented

and tested on a continuous number recognition

task.

1 Introduction

In speech recognition, two conventional methods

have been used to calculate the likelihood com-

putation of CMHMM. One is to use full covari-

ance matrices and the other is to use diagonal

covariance matrices[2]. The former realizes higher

recognition rate. However, if the dimension of the

covariance matrices is large, the amount of calcu-

lation is too large to realize a real-time system.

The latter, in which only diagonal elements of the

covariance matrices are used, reduces the amount

of the calculation. However, using only diago-

nal elements results in a poorer recognition rate

than using full covariance matrices, especially in a

noisy environment. Although each method has its

advantages, tradeo� between the recognition rate

and the amount of calculation is not considered.

To solve this problem, a new algorithm using

block-diagonal covariance matrices is considered.

The crucial ideas are as follows:

1: Some non-diagonal elements of covariance ma-

trices, which have a signi�cant e�ect on the

output probability, are preserved as block ma-

trices.

2: Block-diagonal covariance matrices are cre-

ated by 
exibly determined structure of block

matrices, considering tradeo� between the re-

cognition rate and the amount of calculation.

3: The block matrices are optimized by mini-

mizing di�erence between the output proba-

bility calculated with full covariance matrices

and that calculated with block-diagonal co-

variance matrices.

The paper is organized as follows. Section 2

con�rms the ability of the conventional method to

calculate the likelihood computation of CMHMM.

In Section 3 the method to calculate the likelihood

with block-diagonal covariance matrices is shown.

Section 4 reports the results of a recognition ex-

periment and shows the e�ect of the proposed

method. Finally, Section 5 concludes this paper

and indicates some guidelines for future work.

2 Conventional Likelihood Co-

mputation of CMHMM

In CMHMM, the likelihood bij between an input

feature vector and each Gaussian distribution is

bij(yt) =
1

(2�)n=2j�ij j1=2

� exp[�
1

2
(yt � �ij)

T��1
ij (yt � �ij)]; (1)



where yt denotes an n-dimensional input feature

vector at time t, �ij and �ij are a covariance ma-

trix and a mean vector of a Gaussian distribution

respectively, and i and j denote state numbers.

To make the expression short, the su�xes i and j

are omitted in the following discussion.

The order of computation of the exponential

member in the equation (1) is n2. For a real-time

recognition system, the reduction of the amount

of the arithmetic operation is crucial.

One conventional method to reduce the calcula-

tion is to use diagonal covariance matrices. If a

diagonal covariance matrix is

�diag = diag(�21; �
2
2; : : : ; �

2
n); (2)

where �2i (i = 1; : : : ; n) are variances for each fea-

ture vector component, then the equation (1) be-

comes

b(yt) =
1

(2�)n=2j�diagj1=2

� exp[�
1

2

nX
i=0

(yi � �i)
2

�2i
]: (3)

By using covariance matrices, the order of compu-

tation of the exponential member in the equation

(3) is reduced to n.

In the equation (2), however, non-diagonal el-

ements of a covariance matrix are replaced with

zero. This replacement is equivalent to assum-

ing that elements of a characteristic vector have

no correlation to one another. If some feature

vector components have signi�cant correlation to

one another, the di�erence between the output

probability calculated with full covariance matri-

ces and that calculated with diagonal covariance

matrices becomes large and causes the degrada-

tion of recognition rate. By using block-diagonal

covariance matrices, this problem can be solved.

3 Likelihood Computation of

CMHMM using Block{

diagonal Covariance Matrices

3.1 Continuous Mixture HMM using

Block-diagonal Covariance Matri-

ces

A block-diagonal covariance matrix can be de-

noted as

�BD =

2
666664

A1 0 � � � 0

0 A2

. . .
...

...
. . . 0

0 � � � 0 AD

3
777775
; (4)

where Ai is a di-dimensional square, symmetric

and positive de�nite matrix and di satis�es

DX
i=1

di = n: (5)

If � in the equation (1) is replaced with �BD,

then the equation (1) becomes

b(yt) =
1

(2�)n=2j�BDj1=2

� exp[�
1

2

DX
k=1

xtkA
�1
k xk]; (6)

where xk is a dk-dimensional vector and satis�es

yt � � = (x1x2 � � �xD)
T : (7)

The order of computation of the exponential

member in the equation (6) is
PD

i (di�di), whereas

that using full covariance matrices is n2.

The structure of block matrices, di and D, is

determined according to speci�cations of a sup-

posed system. If a faster system is needed, the

number and dimension of block matrices should

be small, namely
PD

i (di � di) should be small.

On the other hand, if a higher recognition rate is

required, they should be large. In this case the

amount of calculation becomes large.

After the determination of the structure, the

next problem is how to choose block-matrices.



3.2 How to Obtain \Optimal" Block-

diagonal Covariance Matrices

If su�cient training data are prepared and full

covariance matrices are well trained, the perfor-

mance using the full covariance matrices is higher

than using any block-diagonal covariance matri-

ces. Considering this fact, block-diagonal covari-

ance matrices have been chosen to minimize the

di�erence between the equation (1) and (6). j�j

in (1) and j�BDj in (6) are constant. So block-

diagonal matrices are determined by minimizing

jxT��1x� xT��1
BDxj

= jxT (��1 ���1
BD)xj; (8)

where x = yt � �.

To obtain �BD which minimizes the equation

(8), the following lemma is available:

Lemma 1 Let A;B 2 Rn�n � be symmetric ma-

trices and A be positive de�nite. Then, under

the condition xTAx � 1, the maximum value of

jxTBxj is max� j�(BA
�1)j y.

A full covariance matrix�, a block-diagonal co-

variance matrix �BD and their inverse matrices

��1, ��1
BD are square, symmetric and positive

de�nite. So ��1���1
BD is a square and symmet-

ric matrix (not necessarily positive de�nite). If

A and B in the lemma 1 are replaced with ��1

and��1���1
BD respectively, then, under the con-

dition xT��1x � 1, the maximum value of the

equation (8) is

max
�

j�((��1���1
BD)�)j = max

�
j�(I���1

BD�)j:

(9)

A vector yt which satis�es the condition x
T��1x =

1 is a vector one standard deviation away from

the mean �. Then a block-diagonal covariance

matrix which minimizes the equation (9) under

xT��1x � 1 has been chosen. Namely, an op-

timal block-diagonal covariance matrix is deter-

mined by

�BD = arg min
�BD

max
�

j�(I ���1
BD�)j: (10)

�

R
n�n means a class of n�n-dimensional real matrices.

y

�(A) is an eigen value of a matrix A.

The �BD cannot be solved analytically. So this

problem is solved by choosing a combination of

feature vector components which minimizes the

equation (9). If elements of a full covariance ma-

trix are �ij, then the i-th block matrix in the

equation (4) is expressed as

Ai =

2
64

�pp � � � �p;p+di�1

...
. . .

...

�p+di�1;p � � � �p+di�1;p+di�1

3
75 ; (11)

where p =
Pdi�1

j=1 .

The procedure of the algorithm to choose the

combination is as follows:

S1: Compute full covariance matrices(n � n di-

mension) for each HMM model.

S2: Determine the number(D) and dimension(d�

d) of block matrices according to speci�ca-

tions of a required system.

S3: For each possible combination of d input fea-

ture vector components, make a block-diagonal

covariance matrix�BD with their covariance

elements and all diagonal elements. Then

calculate the equation (9) using the�BD and

obtain the combination which minimizes (9).

S4: If the number of block matrices reaches the

determined number(D), use the obtained block-

diagonal covariance matrices �BD for recog-

nition. If not, remove rows and columns that

include the obtained block matrices from full

covariance matrices � and reiterate from S3.

In S2 the number and dimension of block matrices

do not need to be the same values for all covari-

ance matrices.

4 Simulations

The algorithm proposed in the previous section

was implemented and tested on a continuous num-

ber recognition task.

The training and evaluation conditions were as

follows:

- A feature vector was 30-dimension.



- Training data were 35 balanced four-digit con-

tinuous numbers uttered by 222 di�erent speak-

ers.

- Evaluation data were the same numbers ut-

tered by 10 di�erent speakers.

- Each evaluation datum was recognized under

city car noise of 20, 10, 0 dB.

Table 1 shows the average recognition rate un-

der each condition. Each full covariance matrix

was block-diagonalized to �fteen 2� 2-block ma-

trices, ten 3�3-block matrices and six 5�5-block

matrices.

Table 1: Speech recognition performance under

city car noise(%)

20dB 10dB 0dB

diagonal 96.51 97.09 96.51

2 � 2 � 15 97.09 97.09 96.22

3 � 3 � 10 97.09 97.09 97.38

5 � 5 � 6 97.97 98.26 98.26

full 99.42 100.00 99.13

The reduction rates of the calculation of diag-

onal, 2 � 2 � 15, 3 � 3 � 10 and 5 � 5 � 6

block-diagonal covariance matrices as compared

with full covariance matrices were 96.7%, 94.7%,

90.0% and 83.3% respectively. Table 1 also shows

that the tradeo� between the recognition rate and

the amount of calculation can be determined 
ex-

ibly through the number and dimension of block

matrix.

5 Conclusion and FurtherWork

A new algorithm to reduce the amount of calcu-

lation in the likelihood computation of CMHMM

with 
exibly created block-diagonal covariance ma-

trices has been proposed. The idea was imple-

mented and tested on a continuous number recog-

nition task. The result of the simulations showed

that tradeo� between the amount of calculation

and the recognition rate can be determined 
exi-

bly with the proposed algorithm.

Further work will include:

- Vector quantization of the combined feature

vectors and table look-up.

- Block-diagonal training when training-data

are poor.

Vector quantization and table look-up is a con-

ventional method to reduce the amount of calcu-

lation in the likelihood computation of CMHMM.

But quantization error becomes large in propor-

tion to the dimension of a feature vector. In the

proposed method each dimension of a block ma-

trix can be small. This leads to small quantization

error.

This paper assumed that full covariance matri-

ces were well-trained. If training-data are lim-

ited and full covariance matrices are poorly es-

timated, the proposed algorithm doesn't provide

reliable block matrices[1]. In this case, the follow-

ing method is possible:

- First, create full covariance matrices with small

number of mixtures.

- Secondly, obtain an optimal combination of

feature vector components with the proposed

method.

- Finally, retrain block-diagonal covariance ma-

trices with more mixtures using the combina-

tion obtained above.

Veri�cation of these methods is a subject for

future work.
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