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ABSTRACT too little data, effectively reducing the number of Gaussians in that
We present two different approaches for robust estimation of thfetztueltglilf;e\:’ znglleﬁd:‘g tch Tge robiuzt ?:t'ma[:'OP'tTh:S atlgro\r/l\}:]m:
parameters of context-dependent hidden Markov models (HMM? ariable numberof >aussians in each state cluster, where

e number of Gaussians in each cluster is dependent on the amount

for speech recogtion. The first approach, the Gaussian Merging- : .
Splitting (GMS) algorithm, uses Gaussian splitting to uniformly dis-Of data segmented Into th? states_ n that Cll.JSter' We compare _the
tribute the Gaussians in acoustic space, and merging so as to co(l?’n'\fIS algorithm to our previous training algorithm, and show that it
pute only those Gaussians that have enough data for robust edfyes more robust model estimates.
mation. We show that this method is more robust than our prevWhile the GMS algorithm works well, it indirectly addresses the
ous training technique. The second approach, called tied-transfoproblem of robust estimation by estimating only those Gaussians
HMMs, uses maximume-likelihood transformation-based acoustior which there is enough data. We present a second approach
adaptation algorithms to transform a small HMM to a much largecalled tied-transform HMMs (or FHMMs) that directly addresses
HMM. Since the transforms are shared or tied among Gaussiansthre problem of estimating Gaussian parameters with little data. In
the larger HMM, robust estimation is achieved. We show that thithis approach, an HMM is first trained robustly using the GMS al-
approach gives a significant improvement in recogniicnuracy gorithm. This is then adapted to an HMM with a larger number
and a dramatic reduction in memory needed to store the models. of state clusters using maximum-likelihood (ML) transformation-
based acoustic adaptation [4, 5, 6, 7]. The Gaussians in each state

1. INTRODUCTION cluster in the larger HMM share the same transform, or set of trans-

Most conventional automatic speech recitign (ASR) systems forms. Because of this sharing, or tying, we can robustly estimate
are based on Contex’[_dependen’[ (CD) phone_based hidden Marﬁbe tranSfOfmS, reSUlting in reliable estimates of the Gaussians in
models (HMMs) that use Gaussian mixture models (GMMs) for théhe larger HMM. We show that this approach gives a significantim-
state-conditioned observation densities. A commonly used CD uriifovement in accuracy over the GMS algorithm. Ini&idd, since

is the triphone, which is a model of a phone in the context of a lefh€ large HMM can be stored as a combination of the smaller HMM
and right phone. The number of triphones in typical HMMs is veryand the set of tied transforms, instead of having to store all the Gaus-
large, and the training data limited, resultingfinor estimates of Sian parameters of the large HMM individually, we get a dramatic
the model parameters. A popular solution to this problem is to uggduction in the number of model parameters that need to be stored.

HMM state clustering where the states in a cluster share a set gf section 2 we describe the GMS algorithm, and in Section 3 we
parameters, such as a set of Gaussians [1, 2]. Pooling data ameRgcribe the 3:HMM approach. Experimental results for these
shared parameters in this way gives robust estimates. methods are described in their respective sections. We summarize

In this paper, we report on two techniques we have recently dé Section 4.
veloped for robust CD-HMM estimation. The first is a training al-
gorithm called Gaussian Merging-Splitting (GMS), which we have 2. GAUSSIAN MERGING-SPLITTING
also described in [3]. The GMS algorithm is a robust method to ALGORITHM
train the GMMs in state-clustered HMMs. In this approach, Gau : s :
sian splitting is used to uniformly distribute the Gaussians in th?'l' Previous Tralnlng Algorlthm
acoustic space. In aifibn, we use a Gaussian merging algorithmSRI's DECIPHER M speech recogtion system is based on HMM
to automatically select the number of Gaussians in the GMMs fatate clustering where the states in each cluster share the same set
each state cluster subject to a constraint on the maximum possibleGaussians or Genone [1]. Each state in a cluster has a different
number of Gaussians. This algorithm merges Gaussians that hamixture weight distribution to these shared Gaussians. The HMM
states are clustered separately for each phone.
*THIS WORK WAS SPONSORED BY DARPA THROUGH NAVAL  Consider the problem of training an HMM with 32 Gaussians per
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DER CONTRACT N66001-94-C-6048.




(PTM) system, where all states in a phone share the same set of 10( Word Error Rate (%)
Gaussians. The states in this phone are then clustered using bottomf Old algorithm GMS algorithm
up agglomerative clustering. For clustering, the distance between|| Database|| 991 2027 991 2027
two states is given by the weighted-by-counts increase in entropy of Genones| Genones|| Genones| Genones
the mixture weight distribution (to the shared 100 Gaussians) due to [ \wsJ1 23.7 253 235 23.0
merging the two states [1]. WSJ2 13.7 155 135 141

The Gaussians in each state cluster aitilized using the corre- WSJ3 24.3 26.0 23.9 25.1

sponding 100 PTM Gaussians. The 100 Gaussians in each phone

are clustered down to the required number for each state clustEable 1: Comparison of word error rates (%) for systems with dif-
through a series of steps involving the selection of the most likelferent numbers of parameters

Gaussians for each state cluster, and also Gaussian merging. Details

of the algorithm can be found in [1]. in between these extremes. We experimented with many of these

. . ) ._.approaches. While there was not a very significant difference in
This approach poses the following potential problem for the ini- - . .

. . . . e[formance, we decided on a simple strategy that splits all Gaus-
tial values of the Gaussians in the state clusters and hence the flﬁ% ; . .

. . . . slans at each stage until we have the desired number of Gaussians
models: The 100 PTM Gaussians cover the entire acoustic SPACE. enone
for a particular phone; however, each state cluster for this phor?e '

covers only a small part of this large acoustic space. Thus, tt2. 3. Gaussian Merging

PTM Gaussians may not be appropriate for initializing the Gaus- ) . . .
sians in the individual state clusters, and may result in inefficierf there is too little training data segmented into an HMM state clus-

use of the parameters. Since the expectation-maximization (EN then the Gaussians in the corresponding Genone will not be
well estimated. To ensure robust Gaussian estimation, we used a

algorithm, which is commonly used to estimate HMMs, is locally > . . ’ ; )
optimal, good iitial values are important. Gaussian merging algorithm. In_thls method, the Gaussw_:lns in a

Genone are iteratively merged using bottom-up agglomerative clus-
To address this issue, we developed an algorithm that uses Gaussi@fhg until all Gaussians have at least a threshold amount of data.
Sp'lttlng to uniformly distribute the Gaussians in the acoustic SPacCghis threshold is specified by the user, and its optimum value is ex-
for each state cluster. We then combined this with Gaussian mergiR@rimentally determined. For clustering, the distance between two
so as to make sure that each Gaussian had at least a thresholg@f;ssians is given by the weighted-by-counts increase in entropy
data. The combination of these methods thus gives good acousdige to merging the Gaussians. More details of the GMS algorithm
coverage for the Gaussians and also robust parameter estimates.dAdl be found in [3].

now briefly describe these methods. ]
2.4. Experimental Results

2.2. Gaussian Splitting _ _

_ o _We trained HMMs using a small subset of the Wall Street Journal
We implemented an initialization scheme based on the splittingysJ) S1-284 male training data. We used 71 of the 142 male train-
strategy commonly used in vector quantization [8]. In this approacthg speakers and about 50 sentences from each for a total of about
we first estimate a single Gaussian model for each Genone. GivgBo0 training sentences. We created three different WSJ test sets,
the segmentation of data into HMM states, the ML estimate of thesfenoted as WSJ1, WSJ2, and WSJ3, each with 10 male speakers
(single) Gaussians is globally optimal. We then split the Gaussiaihd about 3600 words, for a total of about 10,900 words in all. For
for each Genone into two by slightly perturbing the mean of thgpeed of experimentation, recognition was run from bigram lattices
Gaussian along the direction of the standard-deviation vector, agdscribed in [9].

reestimate the model by further EM training. This process of split- o ) )
ting and retraining is repeated until the required number of Gaud0 measure the robustness of the training algorithms, we trained two

sians is achieved. At each stage, we can choose how many GafdIMs. one with about 1000 Genones and the second with about
sians to split. Thus, if there are currentiyGaussians which we 2000 Genones. Both models had 32 Gaussians per Genone. We

want to increase tm Gaussians, then we split the— n Gaussians (raineéd models using both our old algorithm and the new GMS al-
which have the largest average sample variance. This average, cdffithm. Table 1 shows that the GMS algorithm performs similarly

puted by using the geometric mean, is a measure of the likelihood [9=the old method for the smaller model, but is S|gn|f|can_tly superior
the training data modeled by that single Gaussian model. The Gad@r the larger model, where the number of parameters is very large

sian with the largest variance is the one for which the training daf§'ative to the amount of training data. This shows the robustness
likelihood is minimum. Since our goal is to maximize the training®! the GMS algorithm relative to our previous approach. We have

data likelihood, sfitting this Gaussian is intuitively appealing. A 9\vén & more detailed comparison of the GMS algorithm with our
similar Gaussian splitting algorithm is used in the Cambridge UniPreVious training approachiin [3].

versity HTK system, though a different criterion is used to select 3. TIED-TRANSFORM HMM

which Gaussian to split [2].

The Gaussian splitting approach can be configured in a variety gf'l' Algomhm Descrlptlon

ways. For example, we may split all Gaussians at each stage, or maile the GMS algorithm gives robust parameter estimates, it does
split only the single largest variance Gaussian, or may do somethigg indirectly by creating only as many Gaussians as there is enough



data to estimate robustly. Thus, the total number of Gaussians@aussian means as this has given us good performance in the past
limited by the amount of training data. It would be advantageous tfor speaker adaptation [10]. We solve the ML estimation problem
be able to reliably estimate a larger number of Gaussian parametéesatively. First, we assume identity transforms and estimate the pa-
with the same amount of limited data. The tied-transform HMMameters of the smaller HMM. Then we keep the parameters of the
(T2-HMM) algorithm is one approach that achieves this goal. small HMM fixed, and estimate the transformations. This procedure
As explained in Section 2, we use bottom-up agglomerative clu§d" be iterated. However, in our experiments, we used only one it-

tering to cluster HMM states in a state-cluster tree. This tree ca [ation of this approach. The ML estimation of HMM parameters

be cut at different levels to create different numbers of state clus well estgbll_shed, and that of the tr_ansforma_tlons has previously
en studied in the context of acoustic adaptation [4, 5, 6, 7].

ters. For each state cluster set, we can train a state-clustered HMM.
The larger the number of clusters, the more difficult it is to robustlyrhe T2-HMM idea is related to that of Bayesian estimation of HMM
estimate the parameters with a limited amount of data. parameters [11]. In Bayesian estimation too, a small HMM is

. . . adapted to a large HMM, but using Bayesian smoothing, instead
W lain th 2FHMMs using th -cluster tree in 2 ; , :
€ explain the concept o S using the state-cluster tree of ML transformation-based adaptation as ixHMMs. The T2-

Figure 1. Suppose our goal is to train an HMM for the larger num:
ber of state clustersl. However, we do not have enough data toHM'vI approach has the advantage that we need to store only the

robustly estimate each Gaussian. In teHMM, we solve this parameters of the small HMM and the tied transformation param-

. eters, while in the Bayesian approach, all the Gaussian parameters
lem raining an HMM for the smaller number of lus- o . .
problem by training a or the smaller number of state clus f the large HMM must be individually stored. This results in a

tersM, for which we assume we have enough data to robustly es- . o
timate each Gaussian. We can always sele?:t a small eﬁvzllmy gramatlc reduction in storage for thé-FMMs.
that robust Gaussian estimates are possible. Eachstate clustering9, Experimental Results
larger HMM is a descendent of a state cluster in the smaller HMM as . ) ] ]
shown in the figure. Thus, we can define a mapping from the small¥fe experimented using the Hub4 broadcast news domain. This
to the larger HMM in terms of this ancestor-descendentrelationshif$ the domain for current U.S. Government-sponsored continuous
The Gaussians in the state clusters of the larger HMM are tran3P€€ch recogtion evaluations. For training we used the male sub-
formed versions of the ancestor Gaussians in the smaller HMM. fft of the 100 hours of Hub4 training data released by NIST for
the figure, the transformatiori&(1),..., T(m) are used to map the the 1997 DARPA-sponsored Hub4 evaluation. For testing, we used
Gaussians iBMM(0) to the Gaussians BMM(1),...,GMM(m). ~ the 1996 Hub4 male development test. We ran reitiognus-
T(i) can also be a set of transforms, each tied to a cluster of aco8d frigram lattices generated with our recently developéicé
tically similar Gaussians in a state cluster. Since the transforms aP!s [12]. The Hub4 data is categorized into 7 different acoustic
tied to a set of Gaussians in thestate-cluster HMM, they can be categories. These range from the planned speaking style of news
estimated with the pooled data from all those Gaussians. This r@inouncers (F0), to noisy speech (F4), to speech that is not classifi-
sults in robust estimates of the transforms. In contrast, it is not podP!e into any acoustic category (FX). A detailed description of this
sible to separately estimate the Gaussians inNt@uster HMM  task can be found in [13].
because there is not enough training data for each Gaussian.  Taple 2 gives the recognition word error rates on this test set com-
paring the GMS algorithm, theJHMM approach, and a Bayesian
GMM(0) smoothing approach similar to that of [11]. We trained a crc_)ssword
=< state clustered HMM with 2209 state clusters, and one with 8409
___________ clusters. The 2209-cluster system is the one we used for the 1997
----------- Hub4 evaluations. Table 2 shows that the 8409-cluster model gives
worse performance than the 2209-cluster model when trained us-
ing the GMS algorithm. We then trained the 8409-cluster system
by adapting the 2209-cluster system using both Bayesian smooth-
ing and the -HMM approach. Both techniques give an improve-
ment over the GMS algorithm for the 8409-cluster system (32.0%
to 30.7%). A smaller, but significant, improvement is observed over
the 2209-cluster system (31.4% to 30.7%).

From Table 2, we see that the Bayesian smoothing algorithm and
the T2-HMM algorithm gave the same word error rate. However,
the T2-HMM can be stored much more efficiently, because we need
to store only the smaller HMM and the set of transforms, as opposed
Figure 1: llustration of T-HMM to the Bayesian algorithm, where we must independently store each
Gaussian in the larger model. In particular, as shownin Table 2, the

5 .
The estimation problem is now that of computing the parameters f -1MM needs a factor of 3 less parameters to store the Gaussian
the smaller HMM and the parameters of the transformations. WStributions as compared to the Bayesian-trained HMM.

can use different types of transformations as have been described
in the acoustic adaptation literature [4, 5, 6, 7, 10]. In this paper,
we chose to use the block-diagonal affine matrix transform of the




GMS Bayesian || T>-HMM 5.
smoothing
Number of clusters
2209| 8409|| 8409 || 8409

32 Gaussians per cluster
Number of Gaussian parameters

in Millions

56 ] 30 ] 30 ] 98
FO 1427 156 14.2 14.4 7
F1 ] 30.5] 30.7 29.3 29.2
F2 || 375] 38.2 36.2 36.4
F3 ][ 29.0 ] 30.8 30.5 29.9
F4 ]l 275] 274 26.2 26.2 8
F5 || 28.2] 29.3 28.0 28.2
FX || 56.4 | 56.2 56.0 56.0

[ Al [ 314]320] 307 [ 307 |

Table 2: Comparison of word error rates (%) for different training
algorithms on the 1996 Hub4 development data

4. SUMMARY 1.

We presented two algorithms to robustly train state-clustered HMM
systems. The first method, the GMS algorithm, addresses the prob-
lem indirectly by computing only those Gaussians for which there1
is enough data. The second algorithm, tHeHMM, does this di-
rectly by transforming well-estimated Gaussians in a smaller HMM
to Gaussians in a larger HMM. Thé~HMM algorithm gives ro-

bust estimates where we are unable to estimate the Gaussians di-
rectly because of limited training data. Experimental results show
that the GMS algorithm is more robust than our previous training
procedure for state-clustered HMMs. Thé-AIMM gives a sig-
nificant improvement in accuracy over the GMS algorithm. It alsd-3.
allows us to estimate much larger HMMs than possible with the
GMS algorithm, leading to improved accuracy. THeHMM gave
similar word error rates as compared to a Bayesian training algo-
rithm. However, it required a factor of 3 less parameters to store the
Gaussians.
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