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ABSTRACT
We present two different approaches for robust estimation of the
parameters of context-dependent hidden Markov models (HMMs)
for speech recognition. The first approach, the Gaussian Merging-
Splitting (GMS) algorithm, uses Gaussian splitting to uniformly dis-
tribute the Gaussians in acoustic space, and merging so as to com-
pute only those Gaussians that have enough data for robust esti-
mation. We show that this method is more robust than our previ-
ous training technique. The second approach, called tied-transform
HMMs, uses maximum-likelihood transformation-based acoustic
adaptation algorithms to transform a small HMM to a much larger
HMM. Since the transforms are shared or tied among Gaussians in
the larger HMM, robust estimation is achieved. We show that this
approach gives a significant improvement in recognitionaccuracy
and a dramatic reduction in memory needed to store the models.

1. INTRODUCTION
Most conventional automatic speech recognition (ASR) systems
are based on context-dependent (CD) phone-based hidden Markov
models (HMMs) that use Gaussian mixture models (GMMs) for the
state-conditioned observation densities. A commonly used CD unit
is the triphone, which is a model of a phone in the context of a left
and right phone. The number of triphones in typical HMMs is very
large, and the training data limited, resulting inpoor estimates of
the model parameters. A popular solution to this problem is to use
HMM state clustering where the states in a cluster share a set of
parameters, such as a set of Gaussians [1, 2]. Pooling data among
shared parameters in this way gives robust estimates.

In this paper, we report on two techniques we have recently de-
veloped for robust CD-HMM estimation. The first is a training al-
gorithm called Gaussian Merging-Splitting (GMS), which we have
also described in [3]. The GMS algorithm is a robust method to
train the GMMs in state-clustered HMMs. In this approach, Gaus-
sian splitting is used to uniformly distribute the Gaussians in the
acoustic space. In addition, we use a Gaussian merging algorithm
to automatically select the number of Gaussians in the GMMs for
each state cluster subject to a constraint on the maximum possible
number of Gaussians. This algorithm merges Gaussians that have
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too little data, effectively reducing the number of Gaussians in that
state cluster, and leading to more robust estimation. This algorithm
results in a variable number of Gaussians in each state cluster, where
the number of Gaussians in each cluster is dependent on the amount
of data segmented into the states in that cluster. We compare the
GMS algorithm to our previous training algorithm, and show that it
gives more robust model estimates.

While the GMS algorithm works well, it indirectly addresses the
problem of robust estimation by estimating only those Gaussians
for which there is enough data. We present a second approach
called tied-transform HMMs (or T2-HMMs) that directly addresses
the problem of estimating Gaussian parameters with little data. In
this approach, an HMM is first trained robustly using the GMS al-
gorithm. This is then adapted to an HMM with a larger number
of state clusters using maximum-likelihood (ML) transformation-
based acoustic adaptation [4, 5, 6, 7]. The Gaussians in each state
cluster in the larger HMM share the same transform, or set of trans-
forms. Because of this sharing, or tying, we can robustly estimate
the transforms, resulting in reliable estimates of the Gaussians in
the larger HMM. We show that this approach gives a significant im-
provement in accuracy over the GMS algorithm. In addition, since
the large HMM can be stored as a combination of the smaller HMM
and the set of tied transforms, instead of having to store all the Gaus-
sian parameters of the large HMM individually, we get a dramatic
reduction in the number of model parameters that need to be stored.

In Section 2 we describe the GMS algorithm, and in Section 3 we
describe the T2-HMM approach. Experimental results for these
methods are described in their respective sections. We summarize
in Section 4.

2. GAUSSIAN MERGING-SPLITTING
ALGORITHM

2.1. Previous Training Algorithm
SRI’s DECIPHERTM speech recognition system is based on HMM
state clustering where the states in each cluster share the same set
of Gaussians or Genone [1]. Each state in a cluster has a different
mixture weight distribution to these shared Gaussians. The HMM
states are clustered separately for each phone.

Consider the problem of training an HMM with 32 Gaussians per
Genone. This is done by first training a phonetically tied mixture



(PTM) system, where all states in a phone share the same set of 100
Gaussians. The states in this phone are then clustered using bottom-
up agglomerative clustering. For clustering, the distance between
two states is given by the weighted-by-counts increase in entropy of
the mixture weight distribution (to the shared 100 Gaussians) due to
merging the two states [1].

The Gaussians in each state cluster are initialized using the corre-
sponding 100 PTM Gaussians. The 100 Gaussians in each phone
are clustered down to the required number for each state cluster
through a series of steps involving the selection of the most likely
Gaussians for each state cluster, and also Gaussian merging. Details
of the algorithm can be found in [1].

This approach poses the following potential problem for the ini-
tial values of the Gaussians in the state clusters and hence the final
models: The 100 PTM Gaussians cover the entire acoustic space
for a particular phone; however, each state cluster for this phone
covers only a small part of this large acoustic space. Thus, the
PTM Gaussians may not be appropriate for initializing the Gaus-
sians in the individual state clusters, and may result in inefficient
use of the parameters. Since the expectation-maximization (EM)
algorithm, which is commonly used to estimate HMMs, is locally
optimal, good initial values are important.

To address this issue, we developed an algorithm that uses Gaussian
splitting to uniformly distribute the Gaussians in the acoustic space
for each state cluster. We then combined this with Gaussian merging
so as to make sure that each Gaussian had at least a threshold of
data. The combination of these methods thus gives good acoustic
coverage for the Gaussians and also robust parameter estimates. We
now briefly describe these methods.

2.2. Gaussian Splitting
We implemented an initialization scheme based on the splitting
strategy commonly used in vector quantization [8]. In this approach,
we first estimate a single Gaussian model for each Genone. Given
the segmentation of data into HMM states, the ML estimate of these
(single) Gaussians is globally optimal. We then split the Gaussian
for each Genone into two by slightly perturbing the mean of the
Gaussian along the direction of the standard-deviation vector, and
reestimate the model by further EM training. This process of split-
ting and retraining is repeated until the required number of Gaus-
sians is achieved. At each stage, we can choose how many Gaus-
sians to split. Thus, if there are currentlyn Gaussians which we
want to increase tomGaussians, then we split them�n Gaussians
which have the largest average sample variance. This average, com-
puted by using the geometric mean, is a measure of the likelihood of
the training data modeled by that single Gaussian model. The Gaus-
sian with the largest variance is the one for which the training data
likelihood is minimum. Since our goal is to maximize the training
data likelihood, splitting this Gaussian is intuitively appealing. A
similar Gaussian splitting algorithm is used in the Cambridge Uni-
versity HTK system, though a different criterion is used to select
which Gaussian to split [2].

The Gaussian splitting approach can be configured in a variety of
ways. For example, we may split all Gaussians at each stage, or may
split only the single largest variance Gaussian, or may do something

Word Error Rate (%)
Old algorithm GMS algorithm

Database 991 2027 991 2027
Genones Genones Genones Genones

WSJ1 23.7 25.3 23.5 23.9
WSJ2 13.7 15.5 13.5 14.1
WSJ3 24.3 26.0 23.9 25.1

Table 1: Comparison of word error rates (%) for systems with dif-
ferent numbers of parameters

in between these extremes. We experimented with many of these
approaches. While there was not a very significant difference in
performance, we decided on a simple strategy that splits all Gaus-
sians at each stage until we have the desired number of Gaussians
per Genone.

2.3. Gaussian Merging
If there is too little training data segmented into an HMM state clus-
ter, then the Gaussians in the corresponding Genone will not be
well estimated. To ensure robust Gaussian estimation, we used a
Gaussian merging algorithm. In this method, the Gaussians in a
Genone are iteratively merged using bottom-up agglomerative clus-
tering until all Gaussians have at least a threshold amount of data.
This threshold is specified by the user, and its optimum value is ex-
perimentally determined. For clustering, the distance between two
Gaussians is given by the weighted-by-counts increase in entropy
due to merging the Gaussians. More details of the GMS algorithm
can be found in [3].

2.4. Experimental Results
We trained HMMs using a small subset of the Wall Street Journal
(WSJ) SI-284 male training data. We used 71 of the 142 male train-
ing speakers and about 50 sentences from each for a total of about
3500 training sentences. We created three different WSJ test sets,
denoted as WSJ1, WSJ2, and WSJ3, each with 10 male speakers
and about 3600 words, for a total of about 10,900 words in all. For
speed of experimentation, recognition was run from bigram lattices
described in [9].

To measure the robustness of the training algorithms, we trained two
HMMs, one with about 1000 Genones and the second with about
2000 Genones. Both models had 32 Gaussians per Genone. We
trained models using both our old algorithm and the new GMS al-
gorithm. Table 1 shows that the GMS algorithm performs similarly
to the old method for the smaller model, but is significantly superior
for the larger model, where the number of parameters is very large
relative to the amount of training data. This shows the robustness
of the GMS algorithm relative to our previous approach. We have
given a more detailed comparison of the GMS algorithm with our
previous training approach in [3].

3. TIED-TRANSFORM HMM

3.1. Algorithm Description
While the GMS algorithm gives robust parameter estimates, it does
so indirectly by creating only as many Gaussians as there is enough



data to estimate robustly. Thus, the total number of Gaussians is
limited by the amount of training data. It would be advantageous to
be able to reliably estimate a larger number of Gaussian parameters
with the same amount of limited data. The tied-transform HMM
(T2-HMM) algorithm is one approach that achieves this goal.

As explained in Section 2, we use bottom-up agglomerative clus-
tering to cluster HMM states in a state-cluster tree. This tree can
be cut at different levels to create different numbers of state clus-
ters. For each state cluster set, we can train a state-clustered HMM.
The larger the number of clusters, the more difficult it is to robustly
estimate the parameters with a limited amount of data.

We explain the concept of T2-HMMs using the state-cluster tree in
Figure 1. Suppose our goal is to train an HMM for the larger num-
ber of state clustersN. However, we do not have enough data to
robustly estimate each Gaussian. In the T2-HMM, we solve this
problem by training an HMM for the smaller number of state clus-
tersM, for which we assume we have enough data to robustly es-
timate each Gaussian. We can always select a small enoughM so
that robust Gaussian estimates are possible. Each state cluster in the
larger HMM is a descendentof a state cluster in the smaller HMM as
shown in the figure. Thus, we can define a mapping from the smaller
to the larger HMM in terms of this ancestor-descendentrelationship.
The Gaussians in the state clusters of the larger HMM are trans-
formed versions of the ancestor Gaussians in the smaller HMM. In
the figure, the transformationsT(1); : : : ;T(m) are used to map the
Gaussians inGMM(0) to the Gaussians inGMM(1); : : : ;GMM(m).
T(i) can also be a set of transforms, each tied to a cluster of acous-
tically similar Gaussians in a state cluster. Since the transforms are
tied to a set of Gaussians in theN-state-cluster HMM, they can be
estimated with the pooled data from all those Gaussians. This re-
sults in robust estimates of the transforms. In contrast, it is not pos-
sible to separately estimate the Gaussians in theN-cluster HMM
because there is not enough training data for each Gaussian.

T(1)
T(2)

T(m)

M state clusters

N state clusters

HMM states

GMM(0)

GMM(1) GMM(2) GMM(m)

Figure 1: Illustration of T2-HMM

The estimation problem is now that of computing the parameters of
the smaller HMM and the parameters of the transformations. We
can use different types of transformations as have been described
in the acoustic adaptation literature [4, 5, 6, 7, 10]. In this paper,
we chose to use the block-diagonal affine matrix transform of the

Gaussian means as this has given us good performance in the past
for speaker adaptation [10]. We solve the ML estimation problem
iteratively. First, we assume identity transforms and estimate the pa-
rameters of the smaller HMM. Then we keep the parameters of the
small HMM fixed, and estimate the transformations. This procedure
can be iterated. However, in our experiments, we used only one it-
eration of this approach. The ML estimation of HMM parameters
is well established, and that of the transformations has previously
been studied in the context of acoustic adaptation [4, 5, 6, 7].

The T2-HMM idea is related to that of Bayesian estimation of HMM
parameters [11]. In Bayesian estimation too, a small HMM is
adapted to a large HMM, but using Bayesian smoothing, instead
of ML transformation-based adaptation as in T2-HMMs. The T2-
HMM approach has the advantage that we need to store only the
parameters of the small HMM and the tied transformation param-
eters, while in the Bayesian approach, all the Gaussian parameters
of the large HMM must be individually stored. This results in a
dramatic reduction in storage for the T2-HMMs.

3.2. Experimental Results
We experimented using the Hub4 broadcast news domain. This
is the domain for current U.S. Government-sponsored continuous
speech recognition evaluations. For training we used the male sub-
set of the 100 hours of Hub4 training data released by NIST for
the 1997 DARPA-sponsored Hub4 evaluation. For testing, we used
the 1996 Hub4 male development test. We ran recognition us-
ing trigram lattices generated with our recently developed lattice
tools [12]. The Hub4 data is categorized into 7 different acoustic
categories. These range from the planned speaking style of news
announcers (F0), to noisy speech (F4), to speech that is not classifi-
able into any acoustic category (FX). A detailed description of this
task can be found in [13].

Table 2 gives the recognition word error rates on this test set com-
paring the GMS algorithm, the T2-HMM approach, and a Bayesian
smoothing approach similar to that of [11]. We trained a crossword
state clustered HMM with 2209 state clusters, and one with 8409
clusters. The 2209-cluster system is the one we used for the 1997
Hub4 evaluations. Table 2 shows that the 8409-cluster model gives
worse performance than the 2209-cluster model when trained us-
ing the GMS algorithm. We then trained the 8409-cluster system
by adapting the 2209-cluster system using both Bayesian smooth-
ing and the T2-HMM approach. Both techniques give an improve-
ment over the GMS algorithm for the 8409-cluster system (32.0%
to 30.7%). A smaller, but significant, improvement is observed over
the 2209-cluster system (31.4% to 30.7%).

From Table 2, we see that the Bayesian smoothing algorithm and
the T2-HMM algorithm gave the same word error rate. However,
the T2-HMM can be stored much more efficiently, because we need
to store only the smaller HMM and the set of transforms, as opposed
to the Bayesian algorithm, where we must independently store each
Gaussian in the larger model. In particular, as shown in Table 2, the
T2-HMM needs a factor of 3 less parameters to store the Gaussian
distributions as compared to the Bayesian-trained HMM.



GMS Bayesian T2-HMM
smoothing

Number of clusters
2209 8409 8409 8409

32 Gaussians per cluster

Number of Gaussian parameters
in Millions

5.5 30 30 9.8

F0 14.2 15.6 14.2 14.4
F1 30.5 30.7 29.3 29.2
F2 37.5 38.2 36.2 36.4
F3 29.0 30.8 30.5 29.9
F4 27.5 27.4 26.2 26.2
F5 28.2 29.3 28.0 28.2
FX 56.4 56.2 56.0 56.0

All 31.4 32.0 30.7 30.7

Table 2: Comparison of word error rates (%) for different training
algorithms on the 1996 Hub4 development data

4. SUMMARY
We presented two algorithms to robustly train state-clustered HMM
systems. The first method, the GMS algorithm, addresses the prob-
lem indirectly by computing only those Gaussians for which there
is enough data. The second algorithm, the T2-HMM, does this di-
rectly by transforming well-estimated Gaussians in a smaller HMM
to Gaussians in a larger HMM. The T2-HMM algorithm gives ro-
bust estimates where we are unable to estimate the Gaussians di-
rectly because of limited training data. Experimental results show
that the GMS algorithm is more robust than our previous training
procedure for state-clustered HMMs. The T2-HMM gives a sig-
nificant improvement in accuracy over the GMS algorithm. It also
allows us to estimate much larger HMMs than possible with the
GMS algorithm, leading to improved accuracy. The T2-HMM gave
similar word error rates as compared to a Bayesian training algo-
rithm. However, it required a factor of 3 less parameters to store the
Gaussians.
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