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ABSTRACT state-dependent GMMs. Because of robust parameter estimation,
Most current state-of-the-art large-vocabulary continuous speegk'yl HMMs were found to perform significantly better than *fully

recognition (LVCSR) systems are based on state-clustered hidd%%ntlnuous HMMs, where each state used a separate GMM. To get

Markov models (HMMs). Typical systems use thousands of stagc%r;)d:tzltlsg?xgis t:;agge'\g s]),/}sttﬁgsé shsiz(:[scazlal);ge:rztzggeus-
clusters, each represented by a Gaussian mixture model with a f y prop ) y ! P

tens of Gaussians. In this paper, we show that models with f \}Ig\n codebook was shared among all triphone states corresponding
more parameter tying, like phonetically tied mixture (PTM) mod-0 the same base phone [3].

els, give better performance in termshafth recognition accuracy The next step was state-clustered HMMs [4, 5, 6], where the amount
and speed In particular, we achieved between a 5 and 10% imeftying was decreased even further, and which represent the state of
provement in word error rate, while cutting the number of Gaussiahe art in current speech recagon technology. In this approach,
distance computations in half, for three different Wall Street Jouthe amount of tying is considerably less than in a TM or PTM sys-
nal (WSJ) test sets, by using a PTM system with 38 phone-classm. HMM states are clustered according to acoustic similarity. The
state clusters, as compared to a state-clustered system with 937 stdddes in each cluster either share the same GMM [4, 5], or only
clusters. For both systems, the total number of Gaussians was fixgthre the same set of Gaussians but use different mixture weights
at about 30,000. This result is of real practical significance as wer each state [6, 7]. A small number of Gaussians is used for each
show that a conceptually simpler PTM system can achieve fasteluster, and improved acoustic resolution is achieved by increasing
and more accurate performance than current state-of-the-art stettee number of state clusters.

clustered HMM systems. State-clustered HMMs were experimentally shown to be superior to

1. INTRODUCTION TMand PTM HMMs (e.g., see [6]). However, it is important to note
-~ ) that, in this comparison, the TM and PTM systems had a total of 256

Most state-of-the-art speech recdgm systems use hidden and 4000 Gaussians, respectively, drastically fewer than the state-
Markov models (HMMs) to model triphone speech units. The NUMgjystered system, which had about 24,000 Gaussians [6]. Other pre-
ber of trlphones is usually very Igrge. For e_xample_, models Witllioys experiments with TM and PTM systems [2, 8, 9] also appear
10,000 triphones are common. Since each triphone is usually mo@have used very few Gaussians in comparison to that used in most
eled by atleast three HMM states, this results in about 30,000 HMM,rrent state-clustered systems. This observation suggests the pos-
states. Egch state is typlc_ally modeled by a Gaussian mixture m?%%ility that approaches with more tying, like TM and PTM models,
(GMM) with a few Gaussians. Thus, the total number of Gaussiajp appropriately designed, may perform better than in the past. In
parameters can be on the order of a few hundreds of thousands. particular, we achieved between a 5 and 10% improvement in word
Estimating a separate GMM for each triphone state will require &rror rate for three Wall Street Journal (WSJ) test sets using a 38-
huge amount of training data. However, since training data is us@luster PTM system as compared to a 937-cluster state-clustered
ally limited, it is not possible to reliably estimate such a large numsystem, while simultaneously cutting the number of Gaussian com-
ber of parameters. In one of the first approaches to robust HMM eButations during recognition in half. This result is extremely signif-
timation, called the Tied-Mixture (TM) HMM, a single set of Gaus-icant as we have achieved a simultaneous improvement in accuracy
sian distributions was shared (or tied) across all the states [1, Znd speed. It is also the first time, to the author's knowledge, that
Since the Gaussians were shared, data could be pooled from difféfte conceptually simpler PTM system has been shown to outper-
ent HMM states to train them robustly. Each state was differentiatf@'m the currently dominant state-clustered approaches.

by a different mixture weight distribution to these shared Gaussiang, section 2, we describe the effect of changing the amount of tying,
The shared Gaussians along with the mixture weights defined th¢ yarying the number of state clusters, on recognitiocuracy and
speed. In Section 3 we give detailed experimental results comparing
*THIS WORK WAS SPONSORED BY DARPA THROUGH NAVAL PTM and state-clustered systems. We summarize in Section 4.
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2. EFFECT OF VARYING THE NUMBER state clusters in the overlap region, resulting in wasted param-
OF STATE CLUSTERS eters.

The number of Gaussian parameters that can be robustly estimatge can address these problems by merging the two clusters into one
is limited by the finite amount of training data. However, the samejuster with M Gaussians. Since data from the two clusters is now
total number of Gaussians can be achieved by using fewer state clused to estimate a single set dfl aussians, there is more robust
ters and more Gaussians per cluster, or more state clusters and fewgtimation in the overlap region. Further, the previously redundant
Gaussians per cluster. For example, a system with 1000 state cl@aussians can now be more effectively used to increase acoustic
ters and 32 Gaussians per cluster has the same number of Gaussigsslution, as shown in Figure 2. The improved Gaussian estimates
as one with 32 clusters and 1000 Gaussians per cluster. We disces8l the better acoustic resolution can lead to improved recognition
how varying the number of clusters affects recogniticouracy and  accuracy.

speed.

2.1. State Clustering and Accuracy

Consider a state-clustered system where each state cluster sharesthe
same set of Gaussians, and each triphone state has a separate mix-
ture weight distribution to these shared Gaussians. Suppose we can
robustly train at mos state clusters withl Gaussians per cluster,
given a certain amount of training data. It is possible to decrease the
number of clusters, while increasing the number of Gaussians per
cluster, without affecting the robustness of the Gaussian parameter
estimates, since the total number of Gaussians can be held constant.
We now examine the effect of decreasing the number of clusters on
accuracy.

If the Gaussian distributions for the state clusters do not overlap

in acoustic space, then further grouping of the clusters will have no
effect on performance, as the resulting models will be effectively
the same, as shown in Figure 1. However, state clusters do overlap

Figure 2: Merging of overlapping state clusters

While merging the two clusters has these advantages, it also has
a potential drawback: it may be necessary to separately estimate
Gaussians in the overlap regions to be able to aid in discriminating

between the clusters, and merging the clusters can reduce this dis-
criminability. Since decreasingthe number of clusters can have both

a positive and a negative effect on accuracy, the optimal number of

state clusters can be determined experimentally so as to minimize
the word error on development test data.

2.2. State Clustering and Speed

Computation of the frame-log-likelihoods for all the Gaussian
components in each active triphone state during the Viterbi
search is a significant cost affecting recognition speed. In SRI's
DECIPHERM speech recogtion system, this cost is reduced us-
ing Gaussian caching, Gaussian pruning, and Gaussiatlistsor

We now examine how these methods are affected by changing the
number of state clusters.

Gaussian Caching In Gaussian caching, we cache the log-

Y&elihoods for the Gaussians in a mixture as soon as they are com-
sﬁWﬁ’ad for each frame. If the same Gaussian mixture needs to be
evaluated at that frame for another triphone state, the cache is used,

1. Since the data in the overlap region is divided between the twigther than recomputing the likelihoods of the Gaussians in this mix-

state clusters, the Gaussians in this region may not be robustie. This results in a significant cost saving as many triphone states
estimated. share the same Gaussian mixture.

sians are separately estimated for each state cluster. This cause
potential problems:

2. There may be redundancy between the Gaussiansfrom the tWihen state clusters are merged, the number of mixtures is reduced,



but the number of Gaussians per mixture is increased. Thus, while System Word Error Rate (%)

fewer Gaussian mixtures will be computed and cached, the number WSJ1 | WSJ2 | NABN

of Gaussians in each will be proportionally larger. Thus, we expect State- 21.65 | 14.08 | 18.29

no significant effect due to reducing the number of state clusters on clustered

the number of Gaussians computed and cached. However, as we PTM 2049 | 1258 | 16.78

show in the next section, reducing the number of state clusters can

decrease the cost of each Gaussian computation. Table 1: Word error rates for different levels of tying
Gaussian Pruning When computing the set of Gaussians for a

state and frame, it is possible to reduce the amount of Gaussian com- [ System || Shortlist Size]]
putations by retaining only those Gaussians whose log-likelihoods State- 5830534

are within a threshold of the best Gaussian computed so far. By ex- clustered

panding the diagonal covariance Gaussian likelihood computation, PTM 2773199

itis easy to see that we can decide if a Gaussian is within this thresh-

old before computing all the distance compondatshis frame of Table 2: Shortlist size for different levels of tying

speech. This results in a significant reduction in computation cost.

Intuitively, the larger the overlap between Gaussians, the larger thge compared two different systems with different levels of tying.
number of Gaussians that must be retained for any frame, and the first is a state-clustered system with 937 clusters and 32 Gaus-
larger the number of distance components that must be computedjans per cluster. We chose this baseline configuration because it

When state clusters are merged to create a model with less tyiftS given us good performance in the past. The second is a 38-class
the redundant Gaussians in the state cluster overlap region are mbreM system with 789 Gaussians per class. Notice that both systems
effectively used to cover the acoustic space of the clusters. Th@ve a total of about 30,000 Gaussians. Both these systems were
resulting Gaussians will also have smaller variances, as showntfigined using the Gaussian Merging Splitting (GMS) algorithm that
Figure 2. Since smaller variances imply less Gaussian overlap, W& recently developed [10]. This method computes only as many

expect the number of Gaussian distance Components computecﬁaussians as can be I’Obusﬂy estimated giVen the amount of training
be reduced. data, thus giving reliable models. Table 1 compares the word error

) ) . ) rates for the two systems on the three different test sets. It is clear
Gaussian Shortlists Gaussian shortlists are another way to reducg, ot the PTM system is significantly more accurate than the state-

the Gaussian computation during recognition [7]. In this approachystered system on all three test sets. In particular, the word error
the acoustic space is vector quantized. For each vector quantizgss is reduced by 5 to 10%.

tion (VQ) region, a shortlist of Gaussians that have training data _ _ -
likelihood above some threshold is maintained for each state clukt Table 1, we did not use Gaussian shortlists. For the remaining
ter. During recognition, we find the VQ region corresponding tExperiments, we used Gaussian short!lsts and only usc_ad the W_SJl
the frame being evaluated, and only compute the likelihoods for tH&st set. In Table 2, we compare the size of the Gaussian shortlists
Gaussians in the corresponding dfists of the state clusters for for the state-clustered and_the PTM systems. Here “size” refers to
that VQ region, resulting in a significant speed-up. the number of Gaussians in the shortlists. The number of Gaus-

) sians in the PTM system shortlists is half that in the state-clustered
When state clusters are merged to create systems with fewer clug tiists.

ters and more tying, the Gaussian variances are reduced, as in Fig- ) )
ure 2. The reduced variance results in less coverage of the acoudiRxt, we conducted experiments to evaluate the effect of clustering

space by each Gaussian. Thus, Gaussians that previously belon§Bd€cognition computation and speed. We did this by varying the
in a shortlist for a VQ region may nohger have likelihoods high evel of pruning in the Viterbi beam search and plotting the word
enough to belong in the stttist for that region. Thus, we expect a rror rate for the WSJ1 test set against different parameters of in-
reduction in the size of the shortlists when we decrease the numidgfest. These are the number of Gaussians we start computing per

of state clusters, and a corresponding reduction in Gaussian com@igme, the number of actual distance components computed, and
tation. the recognition speed of our system. While the first two parameters

are an objective measure of the Gaussian computation cost incurred
3. EXPERIMENTAL RESULTS during recognition, the system speed is implementation-dependent.

We experimented using the Wall Street Journal (WSJ) database. Fdpures 3, 4,and’5 show these plots.

training, we used 18,000 SI-284 male training sentences, and fitris clear from these figures that a significant computation saving
testing we used three different WSJ-based test sets. Each testisajained by using the PTM system over the state-clustered system.
had 10 speakers, and consisted of about 3600 words, for a totalaf a word error rate of 22%, the PTM system has about a factor
about 10,900 words. The WSJ domain has been used in previoofs2 less Gaussians started, a factor of 2 less distance component
U.S. Government-sponsored speech red@gnevaluations. The computations, and a factor of 5 speed-up. Further, at almost all
test sets we used were created for internal development, and ggpeeds, the PTM system has a lower word error rate, as shown in
not standardized test sets from the WSJ domain. A 20,000-woRigure 5. In all three figures we notice that at very high error rates,
bigram language model (LM) was used for recitign. We referto  the PTM system is worse in terms of Gaussian computation and
the three test sets as WSJ1, WSJ2, and WSJ3. speed (where the curves cross). This occurs because at these error



rates, there are only a few active hypothesesin the search per frame,
requiring the computation of only a few mixtures. The fact that
the state-clustered system has only 32 Gaussians per state cluster as
compared to 789 Gaussians for the PTM system then outweighs the
computational benefits of the PTM model described in Section 2.2.
However, we do not anticipate operating in this high word error
region of the curve.
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Figure 3: Word error vs. number of Gaussians started 2.
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Figure 4: Word error vs. number of Gaussian distance components

computed 7.

4. SUMMARY

We provided a new view of parameter tying in HMM-based speechg.

recognition systems. We showed that PTM systems, if properly
trained, can significantly outperform the currently dominant state-
clustered HMM-based approach. In particular, we achieved be-

tween 5 and 10% reduction in the word error rate. The number 019'

Gaussians in the shortlists was reduced by half. Finally, at a fixed
word error rate, we achieved a factor of 2 reduction in Gaussian dis-

tance computation during recognition, and a factor of 5 speed-up10.

To the best of our knowledge, this is the first paper that shows a
significant performance gain in accuracy, computation, and speed
by using PTM systems as opposed to state-clustered systems.
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Figure 5: Word error vs. recognition speed
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