
 A NEW FAST ALGORITHM FOR AUTOMATIC SEGMENTATION OF
CONTINUOUS SPEECH

Iman Gholampour,Kambiz Nayebi

Electrical Engineering Department, Sharif University of Technology, Tehran, Iran

ABSTRACT

In this paper a new method for automatic segmentation of
continuous speech into phone-like units is addressed. Our
method is based on a very fast presegmentation algorithm which
uses a new statistical modeling of speech and searching in a
multilevel structure, called Dendrogram, for decreasing
insertion rate. In each step the performance of algorithms have
been tested over a large set of TIMIT sentences. According to
these tests, our final segmentation algorithm is capable of
detecting nearly 97% of segments with an average boundary
position error of less than 7 msec and average insertion rate of
less than 12.6%. The paper will describe the algorithms for
determining the acoustic segments. Performance results will
also be included.

1. INTRODUCTION

The problem of segmentation of continuous speech is one of the
most complicated problems in speech processing. There are a
large variety of applications which more or less depends on
solving this problem including automatic segmentation of
continuous speech corpus, automatic speech recognition and
very low bit rate speech coding (segment vocoders).
Unfortunately there is no complete solution for this problem,
but several algorithms have been proposed for approximate
solutions. Ideally, a segmentation algorithm should be able to
reliably detect abrupt acoustic events as well as gradual ones. In
practice we can only separate homogeneous parts of speech. So,
boundary missing and additional boundary insertion are
unavoidable. All we can do is to optimize the system parameters
to minimize missing and insertion rates. In 1988, Glass and Zue
presented a multi-level description of speech segments which
contains both coarse and fine information in one uniform
structure, called dendrogram[1]. Their analysis of dendrogram
showed that it can capture more than 96% of acoustic phonetic
events of interest with an insertion rate of less than 5%. This
was a major improvement over the best results previously
reported with single-level representation which had a combined
deletion and insertion rate of 25% [1]. But they suggest nothing
about automatic selection of segments from dendrograms. Our
work is in some sense a continuation of Glass and Zue’s ideas,
but different presegmentation scheme is adopted and search
algorithms are added for automatic selection of the best set of
segments from dendrograms. The first algorithm is chosen to
search for the best path (namely the best collection of segments)
through dendrograms without using any additional information.
The second one uses some information about phonetic contents
of speech utterances and their lengths to constrain the search

space. So one can divide our proposed strategy into the
following steps :

 1) Presegmenting the input speech (16 KHz, 16 bits).

 2) Constructing the so called dendrogram using presegmenta-
tion results and spectral characteristics of presegments.

 3-a) Searching for the best path through the dendrogram using
a Dynamic Programming approach.

 3-b) Searching for the best path using dynamic programming
and some information about the phonemic contents of speech.

Its worth mentioning here that (3-b) can be used if the
phonemic contents of the input utterances are known. This is
useful for segmentation of speech databases in which all the
required information is available. Details of the algorithms for
each step and results of their performance tests are presented in
this paper.

2. PRESEGMENTATION

Keeping the above problems in mind we design a
presegmentation algorithm which has very low missing rate and
boundary position error, without any control on its insertion
rate. So the insertion rates may become too high. We leave the
solution of this problem to the next step, which uses several
kinds of information about speech segments to decrease
insertion rate. Our presegmentation algorithm is based on a new
statistical similarity measure between short speech segments.
First, we assumed that the short time PDF of speech samples is
approximately Laplacian [2], [3] :

 f x e x
α

αα() | |= −1
2 (1)

where [is a sample in short time speech frame. In addition to
having very good precision, the laplacian PDF has an advantage
of incorporating only one parameter which can easily be
estimated from speech frame energies. Assuming ergodicity of
speech samples in short time frames we have :

 % x
N

x x f x dxn n

n

N
2 2

1

2
2

1 2= = =
= −∞

+∞

∑ ∫ ()
α

 (2)

from which we can easily conclude that :

 α =
2
2

% xn

 (3)

where xn denotes speech samples in a short time frame that

contains N samples and % ⋅ denotes time averaging. for
testing the Laplacian hypothesis, we compared the normalized
amplitude histogram of every 5 msec frame in 840 TIMIT
speech files with its estimated Laplacian PDF using Eq. (2). For
this comparison we chose Kullback distance as a distance
measure between two estimated PDFs [3]. This test shows that
the Kullback distance is always less than ‘2’ for speech frames
and greater than ‘ 2’ for the frames which contains silence, stop
clusures and some weak fricatives. According to these results
we designed a simple algorithm for distinguishing between
speech and silence frames. The position of stop closures and
some week fricatives can also be found by this algorithm. we
use these information later in our search algorithms. For each
pair of speech frames we adopted a similarity measure based on
Laplacian models of these frames (namely the Laplacian PDF
and its α parameter) and Kullback distance between these
models which is defined as :

 D f f f x
f x

f x
dx(||) ()ln

()

()α α α
α

α
1 2 1

1

2

=
−∞

+∞

∫ (4)

it can be shown easily that for Laplacian PDFs , f α1
and f α2

:

 D f f(||) lnα α
α
α

α α
α1 2

1

2

1 2

1

= +
−

 (5)

this distance function does not have commutative property, so
we use a slightly modified distance measure which is defined
as :

 D f f D f f D f f(,) (||) (||)α α α α α α1 2 1 2 2 1
= + (6)

For Laplacian PDFs, fα1
and fα2

Eq. (6) yields :

 D f f(,)
()

α α
α α

α α1 2

1 2
2

1 2

=
−

 (7)

which is our final choice of similarity measure between speech
frames. Our presegmentation strategy then begins with three 5
msec framesF1, F2 and F3 with Laplacian PDF parameters
α1 , α2 and α2 respectively which are shown in Figure (1-a).

A
F2F1 F3

WLPH

F2F1 F3

WLPH

A*

(a)

 (b)

Figure 1 : Frame positions in presegmentation strategy : (a)
Beginning state, (b) Final state.

Then we classify F1 as speech or silence. If it contains silence,
we shiftF1, F2 and F3 with steps of 2.5 msec to right until it

contains speech. In the next step we compute the similarity
between F1, F2 and F2 , F3 using Eq. (7). If F2 is more similar
to F1 than to F3 , we shift F2 and F3 2.5 msec to right while
F1 remains unchanged. This step is repeated until F2 becomes
more similar to F3 than to F1. In this case we adopt the point
A* in Figure (1-b) as a new boundary. This process is repeated

from the new boundary until the input utterance is completely
covered. As a result of incorporating only one parameter for
each speech frame, this algorithm is very fast and can easily be
implemented in real time on an average Pentium PC.
Performance test of presegmentation section has been
performed over 840 SX sentences in Test directory of TIMIT.
Figure (2) shows the histograms of missing rate, average
position error and insertion rate for each test sentence. In each
histogram, the vertical axis depicts the number of sentences for
each region of horizontal axis. For example, there are over 700
sentences in 840 sentences which have missing rate of less than
1%. Unfortunately, in spite of very low averages in missing
rates and boundary position errors (0.54% and 3.5 msec
respectively), the insertion rate is too high (over 150% in an
average). The next part of this paper reports the results of our
efforts in the direction of decreasing insertion rates.

Figure 2 : Test Results of presegmentation algorithm.

3. DECREASING INSERTION RATES

As we stated earlier, our strategy is to construct a multi-level
description of segments and searching through it for the best
collection of segments which covers the input utterance. In the
following subsections we will show that significant decrease in
insertion rate can be achieved without considerable change in
missing rate and boundary position error. We use the algorithm
originally proposed by Glass and Zue for constructing
dendrograms from the resulting segments of the pre-
segmentation process [1], [4], [5]. This multi-level representa-
tion is attractive because it is able to capture both coarse and
fine information in one uniform structure. Acoustic phonetic
segmentation can then be formulated as a path-finding problem
in a highly constrained search space[1]. Figure (3) shows this
representation for the utterance “Don't ask...”'.

3.1. Searching Dendrograms

The basic idea behind this section is searching for a path from
the beginning to the end of a dendrogram (corresponding to the
beginning and the end of input utterance) such that almost
always the highest rectangles are used. For this purpose, we
examined several kinds of optimality criterion which led us to
the following one. We recall that every segment in the

dendrogram has two parameters, namely segment height and
width, as depicted in Figure (3). We define the optimal path as a
continuous collection of dendrogram's rectangles, which has
minimum sum of width to height ratio. With this criterion, the
height of any segment is uniformly distributed over the section
of time axis which is covered by that segment. The cost of
passing through any segment is also defined as the reciprocal of
its corresponding region's weight. Then the search problem can
be stated as finding the minimum cost path through the time
axis, which is weighted partially by several segments.

Figure 3 : A sample dendrogram representation for utterance
“Don’t ask ...”

We present here, a Dynamic Programming type solution for this
above problem which is based on a Graph theoretic point of
view [6]. First of all, every boundary in the presegmentation
output is defined as a directional graph node. So, every
dendrogram's rectangle can be thought as an edge of this graph,
which makes a weighted connection between two nodes.
Therefore, for the ith rectangle in the dendrogram, we have an
edge of weightL Di i in our graph (Li and Di are the rectangle
height and width respectively). The graph direction is defined as
the direction of the time axis. Our algorithm then searches for
the minimum cost path from the starting node to the final one.
The path cost is defined to be the sum of reciprocals of its
corresponding edge weights. Here is our proposed steps for
performing the desired searches :

 • Initialization :

 { }S0 0= ; u0 0= ; i = 0 ;

 • Recursion :

 ∀ ∈
= +

= ≠




+

+
v S

D v D v D u W u v

P v u if D v D vi
i i i i i

i i i
:

() min{ (), () (,)};

() , (() ());
1

1

 u

i

D vi
v S

+
∈

=1 arg min { ()};

 { }S S ui i i+ +=1 1� ; i i= + 1 ;

 Break if i N≥ − 1 , else continue;

 • Back tracking :

 BestPath i P N i() ();= − −1 i N= −01 1, ,..., ;

1 : Number of graph nodes (0 for starting nodes and 1 -1 for
the final node).

ui and v : Graph nodes.

D v() : Cost of a path that connects the starting node to the
v th node.

W u vi(,) : Weight of the edge connecting the ui th node to v th
node.

P v() : Predecessor of v th node in the best path.

A little inspection shows that above algorithm requires 5 22N
computations and 3N memory locations. It can be shown that
our algorithm finds not only the best path to the ending node,
but also the best path to any other node of the graph from the
starting nodes. Finally, the array D contains the costs of these
optimal paths. Therefore, the algorithm can be used sequentially
for real time applications. The performance of the algorithm
was examined over 840 TIMIT sentences, using the
presegmentation results of previous section for each sentence as
an input. Figure (4) shows the test results. Referring to this
figure the average boundary position error and the missing rate
increase to averages of 6.8 msec and 2.84% respectively. But
the important result is that the average of insertion rate
decreases to 22.6% which is approximately1 7 of its value in
the presegmentation stage. In the next section we use segment
length information to decrease the insertion rate even more.

Figure 4 : The results of the first search algorithm.

3.2. Searching Dendrograms For Known
Utterances

In this step, we tried to decrease the insertion rate even more
when the phonemic contents of input utterances are known. As
mentioned earlier, this is useful for automatic segmentation of
speech databases where these information are available. First of
all, we derived the length histograms for the 54 types of
segments, introduced in the TIMIT's transcription. Figure (5)
shows one of these histograms which is computed for the
segments labeled as ‘aa’ from 840 TIMIT transcription files
(named as *.phn). Table (1) outlines some information obtained

from these histograms for each segment type. By incorporating
the above minimum and maximum length information in our
search algorithm, several paths through the segmentation graph
can be rejected in spite of their cost advantages. For this
purpose we designed an algorithm which dynamically assigned
valid regions on the time axis for each segment's boundaries of
known input utterance, during the search time. This algorithm
also used the information about closures and weak fricatives
positions which our presegmentation algorithm can almost
perfectly find them. Valid region assignment restarts after
reaching to each segment of these types.

Figure 5 : A sample length histogram which is computed for
segments labeled as ‘aa’ in TIMIT transcriptions.

 Segment Min Max Ave. Std.
 aa 513 7735 2026.371 865.244
 ae 943 5259 2153.972 716.612
 ah 506 4480 1444.029 567.882
 ao 520 5073 1941.280 732.385
 aw 1077 6057 2873.734 884.599
 b 63 949 283.678 116.993

 bcl 209 3114 1084.352 443.766

 Â

 Â

 Â

 Â

 Â

 Â

 Â

 Â

 Â

 Â

 Â

 Â

 Â

 Â

 Â
 z 460 4240 1433.151 559.891
 zh 670 4218 1460.825 624.673

Table 1 : TIMIT segments length Information.

Figure 6 : Test Results of the second search algorithm.

We also designed an algorithm incorporating nearly valid
(highly probable) regions instead of completely valid ones, but
this algorithm fails for short utterances, which contains small
number of phones. This is because of the fact that in utterances
which have many phones, there are many segments with highly
probable length, but in short utterances this may not be true. A
new performance test has been performed, for the search
algorithm based on valid regions. The insertion rates decreases

to 12.5% without considerable changes in missing rates and
boundary position errors (3.08% and 6.9 msec respectively).
Figure (6) shows the test results similar to the previous test.

4. CONCLUSION

In summary, we have reported new fast algorithms for acoustic
segmentation of continuous speech and results of their
performance tests. These algorithms have been divided into
three major steps and a performance test has been performed
after each step. The 3rd step can be incorporated only if the
phonetic contents of speech utterances are known. Test results
are outlined in Table (2). According to this table and tests
which are performed by Glass and Zue, our segmentation
strategy is capable of detecting almost all of the boundaries that
are captured in a dendrogram with low position errors and
acceptable insertion rate [1]. Table (2) summarizes the
performance results after using each algorithm. This table also
shows that incorporating additional information can improve
the performance of overall segmentation scheme. In addition to
acceptable precision, our overall segmentation scheme has very
low computation cost and it can be implemented in real time on
an average Pentium PC. An important advantage of our
algorithm is that no training or threshold computation is needed
in realizing it. On the contrary, many known segmentation
algorithms usually depend on critical thresholds which must be
estimated before using them. Training or threshold estimation
phase is generally the most critical and difficult step in realizing
segmentation algorithms. This is possibly the most important
advantage of our proposed algorithms.

 (a) (b) (c)
 Presegmentation 0.54% 3.5 msec >150%
 1st Search Alg. 2.84% 6.8 msec 22.6%
 2nd Search Alg. 3.08% 6.9 msec 12.5%

Table 2 : Results of performance tests for each step of the
proposed algorithms, (a) Average missing rate, (b) Average
boundary position error, (c) Average Insertion rate.

5. REFERENCES

[1] J. R. Glass and V. W. Zue, ”Multi-level acoustic
segmentation of continuous speech”, Proc. IEEE ICASSP,
1988.

[2] T. W. Parsons, ”Voice and speech processing”, McGraw-
Hill, 1986.

[3] J. R. Deller, J. G. Proakis and J. H. Hansen, ”Discrete-time
processing of speech signals”, Macmillan, 1993.

[4] P. Cosi, “SLAM : Segmentation and Labeling Automatic
Module”, Proc. EUROSPEECH, 1993.

[5]M. S. Bagley, R. F. Lyon and M. A. Bush, “Acoustic-
Phonetic segment classification and scale space filtering”, Proc.
IEEE ICASSP, 1987.

[6] J. A. Bondy and U. S. Murty, ”Graph theory with
applications”, American Elsevier, 1976.

