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space. So one can divide ouroposed strategy into the

ABSTRACT following steps :

In this paper a new method for automatic segmentation of) Presegmenting the input speech (16 KHz, 16 bits).
continuous sepech into phone-like units is addressed. Our
method is based on a very fast presegmentation algorithm whi
uses a new statistical modeling of speech and searching irf!
multilevel ~structure, called Dendrogram for decreasing  3.a) Searching for the best path through the dendrogram using
insertion rate. In each step the performance of algorithms haygynamic Programmingpproach.

been tested over a large setTdMIT sentences. According to

these tests, our final segmentation algorithm is capable c¢3-b) Searching for the best path using dynamic programming
detecting nearly 97% of segments with an average boundaapd some information about the phonemic contents of speech.
position error of less than 7 msec and average insertion rate of - .
less than 12.6%. The paper will describe the algorithms f(“S worth mentioning here that (3-b) can be used if the

determining the acoustic segments. Performance results vmonem'c contents O_f the input utterances are'know_n. This is
also be included. useful for segmentation of speech databases in which all the

required information is available. Details of the algorithms for

éﬁ Constructing the so called dendrogram using presegmenta-
Qp results and spectral characteristics of presegments.

1. INTRODUCTION each step and results of their performance tests are presented in
this paper.
The problem of segmentation of continuoueesih is one of the
most complicated problems in speech processing. There are a 2. PRESEGMENTATION

large variety of applications which more or less depends on . . . .
gfeeplng the above problems in mind we design a

solving this problem including automatic segmentation . . . oo
continuous spech corpus, automatic speechogition and presegmentation algorithm which has very low missing rate and
very low bit rate spéech coding (segment vocoderj’oundary position error, without any control on its insertion
Unfortunately there is no complete solution for this proble ,atle.t_ So t??hlpsertlcz)rll ratetzs an becf[on:e too E.IQ:' We leave thle
but several algorithms have been proposed for approxim yiution of this problem to the next step, which uses severa
nds of information about sech segments to decrease

solutions. Ideally, a segmentation algorithm should be able Y i e O tati lqorithm is based
reliably detect abrupt acoustic events as well as gradual ones, JRcrHON rate. ur presegmentation algoriinm 1S based on a new
tistical similarity measure between short speech segments.

practice we can only separate homogeneous parts of speech. 30, . .
boundary missing and additional boundary insertion are'rSt’ we assumed that the short time PDF of speech samples is
unavoidable. All we can do is to optimize the system parameteq,gprommatelyl_apIaCIan[2], (31

to minimize missing and insertion rates. In 1988, Glass and Zue
presented a multi-level description of speech segments which
contains both coarse and fine information in one uniform

. ; wherex is a sample in short time speech frame. In addition to
structure, calledlendrograrfil]. Their analysis of dendrogram : s :
. . ._having very good precision, the laplacian PDF has an advantage
showed that it canapturemore than 96% of acoustic phonetic . . - .
. . : . of incorporating only one parameter which can easily be
events of interest with an insertion rate of less than 5%. This.. ) L
L ; stimated from speech frame energies. Assumiggdécity of
was a major improvement over the best results previous

S - ; . eech samples in short time frames we have :
reported with single-level representation which had a comblne%) P

fo(x) = 2o X 1

deletion and insertion rate of 25% [1]. But they suggest nothing N +0o
about automatic selection of se f 2, 1 2 - _2

gments from dendrograms. Our <==N x2= J’x2 f(X)dx=— )
work is in some sense a continuation of Glass and Zue’s ideas, N & J a?

but different presegmentation scheme is adopted and search
algorithms are added for automatic selection of the best setfadm which we can easily conclude that :
segments from dendrograms. The first algorithm is chosen to

search for the best path (namely the best collection of segments) _ 2
. : o . . a= > 3
through dendrograms without using any additional information. < X2 -

The second one uses some information about phonetic contents
of speech utterances and their lengths to constrain the seandtere X, denotes speech samples in a short time frame that



containsN samples and< [}~ denotes time averaging. for contains speech. In the next step we compute the similarity
testing the Laplacian hypothesis, we compared the normalizbdtweenr,, / and r,, /3 using Eq. (7). If / is more similar
amplitude histogram of every 5 msec frame in 840 TIMITo F than to Fz, we shift / and r 2.5 msec to right while
speech files with its estimated Laplacian PDF using Eq. (2). Fay remains unchanged. This step is repeated wtibecomes

this comparison we chosKullback distance as a distance more similar tor; than to /. In this case we adopt the point
measure between two estimated PDFs [3]. This test shows thatin Figure (1-b) as a new boundary. This process is repeated
the Kullback distance is always less than ‘2’ for speech framéom the new boundary until the input utterance is completely
and greater than * 2’ for the frames which contains silence, stapvered. As a result of incorporating only one parameter for
clusures and some weak fricatives. According to these resu#tach speech frame, this algorithm is very fast and can easily be
we designed a simple algorithm for distinguishing betweeimplemented in real time on an average Pentium PC.
speech and silence frames. The position of stop closures dPerformance test of presegmentation section has been
some week fricatives can also be found by this algorithm. wmerformed over 840 SX sentences in Test directory of TIMIT.
use these information later in our search algorithms. For eaEigure (2) shows the histograms of missing rate, average
pair of speech frames we@pted a similarity measure based orposition error and insertion rate for each test sentence. In each
Laplacian models of these frames (namely the Laplacian PD#stogram, the vertical axis depicts the number of sentences for
and its a parameter) and Kullback distance between thessach region of horizontal axis. For example, there are over 700

models which is defined as : sentences in 840 sentences which have missing rate of less than
1%. Unfortunately, in spite of very low averages in missing
B fo (X) rates and boundary position errors (0.54% and 3.5 msec
D( f%” fuz) = J’fal(x)lnmdx (4) respectively), the insertion rate is too high (over 150% in an

average). The next part of this paper reports the results of our

it can be shown easily that for Laplacian PDF&,l,and fuz . efforts in the direction of decreasing insertion rates.
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this distance function does not have commutative property, : E % %
we use a slightly modified distance measure which is define ; 400 0 i
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_ 2 Figure 2: Test Results of presegmentation algorithm
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.0, 3. DECREASING INSERTION RATES

which is our final choice of similarity measure between speechs we stated earlier, our strategy is to construct a multi-level
frames. Our presegmentation strategy then begins with threglgscription of segments and searching through it for the best

msec frames;, F and F; with Laplacian PDF parameters collection of segments which covers the input utterance. In the
ay,aand a, respectively which are shown in Figure (1-a). following subsections we will show that significant decrease in

insertion rate can be achieved without considerable change in
missing rate and boundary position error. We use the algorithm
originally proposed by Glass and Zue for constructing

D(fq, fq,)

A dendrograms from the resulting segments of the pre-

Fl F2 F3 s_egrr_lentation_ process [1],_[4_], [5]. This multi-level representa-
[ L, (a) tion is attractive because it is able to capture both coarse and

time fine information in one uniform structure. Acoustic phonetic

segmentation can then be formulated as a path-finding problem
F F F in a highly constrained search space[1]. Figure (3) shows this
1 2 3 representation for the utterandadn't ask..”.

3.1. Searching Dendrograms

The basic idea behind this section is searching for a path from
(awe beginning to the end of a dendrogram (corresponding to the
beginning and the end of input utterance) such that almost
always the highest rectangles are used. For this purpose, we
Then we classifyr, as speech or silence. If it contains silenceexamined several kinds of optimality criterion which led us to
we shiftr, / and r; with steps of 2.5 msec to right until it the following one. We recall that every segment in the

Figure 1 : Frame positions in presegmentation strategy :
Beginning state, (b) Final state.



dendrogram has two parameters, namely segment height andBreak ifi = N —1, else continue;
width, as depicted in Figure (3). We define the optimal path as a
continuous collection of dendrogram's rectangles, which has’
minimum sum of width to height ratio. With this criterion, the  gegtpatg )= ® N-1- ); i=01..N-1

height of any segment is uniformly distributed over the section

of time axis which is covered by that segment. The cost of : Number of graph nodes ( O for starting nodes &ind for
passing through any segment is also defined as the reciprocatte# final node ).

its corresponding region's weight. Then the search problem can

be stated as finding the minimum cost path through the timé @ndV : Graph nodes.

axis, which is weighted partially by several segments. D(v) : Cost of a path that connects the starting node to the
Vv th node.

Back tracking :

W(y,v) : Weight of the edge connecting tligth node tov th
node.

P(v) : Predecessor of th node in the best path.

A little inspection shows that above algorithm requiﬁedsz/Z
computations and N memory locations. It can be shown that
our algorithm finds not only the best path to the ending node,
but also the best path to any other node of the graph from the
starting nodes. Finally, the arrdy contains the costs of these
optimal paths. Therefore, the algorithm can be used sequentially
for real time applications. The performance of the algorithm
was examined over 840 TIMIT sentences, using the
presegmentation results of previous section for each sentence as
an input. Figure (4) shows the test results. Referring to this
figure the average boundary position error and the missing rate
Figure 3: A sample dendrogram representation for utteranceincrease to averages of 6.8 msec and 2.84% respectively. But
“‘Don't ask ..." the important result is that the average of insertion rate
decreases to 22.6% which is approximatéhof its value in
We present here,Bynamic Programmingdype solution for this  the presegmentation stage. In the next section we use segment
above problem which is based onGaaph theoreticpoint of length information to decrease the insertion rate even more.

view [6]. First of all, every boundary in the presegmentation
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output is defined as a directional graplede So, every A0 7 a0
dendrogram'’s rectangle can be thought asdgeof this graph, 0 0 @
which makes a weighted connection between two node 2300 2140 2180
Therefore, for theith rectangle in the dendrogram, we have ai £ 2 2
edge of weight; /D in our graph (; and D, are the rectangle ¢ 20 & 100 i 100
height and width respectively). The graph direction is defined ¢ 3 = g
the direction of the time axis. Our algorithm then searches fi U; o0 m U; 0 U; A
the minimum cost path from the starting node to the final on 0 i 0
The path cost is defined to be the sum of reciprocals of i o 10 a o m 0D 50 100
corresponding edge weights. Here is our proposed steps - Y%oMissing..  Ave Pos Em/meec.. e lnsertion ...
performing the desired searches : Figure 4: The results of the first search algorithm.
« Initialization :
9={0; w=0; i=0; 3.2. Searching Dendrograms For Known
Utterances

* Recursion :

[Di+1(v) =min{Q (v), B (¢ )+ Wy, V)};

In this step, we tried to decrease the insertion rate even more
when the phonemic contents of input utterances are known. As

OvOS: o '
EP(V) =4.11(B+1(V) 7 BV mentioned earlier, this is useful for automatic segmentation of
—ar in { D(V)}; speech databases where these information are available. First of
Y+1=arg min ’ all, we derived the length histograms for the 54 types of

vQd
g segments, introduced in the TIMIT's transcription. Figure (5)

1= $U{ 1} iZie1 shows one of these histograms which is computed for the
1= Hea s - ' segments labeled daa’ from 840 TIMIT transcription files
(named a¢.phn). Table (1) outlines some information obtained



from these histograms for each segment type. By incorporating 12.5% without considerable changes in missing rates and
the above minimum and maximum length information in ouboundary position errors (3.08% and 6.9 msec respectively).
search algorithm, several paths through the segmentation grdpgure (6) shows the test results similar to the previous test.
can be rejected in spite of their cost advantages. For this
purpose we designed an algorithm which dynamically assigned 4. CONCLUSION
valid regions on the time axis for each segmeyttsndaries of |n symmary, we have reported new fast algorithms for acoustic
known input utterance, during the search time. This algorith@gmentation of continuous esch and results of their
also used the information about closures and weak fricativggrformance tests. These algorithms have been divided into
positions which our presegmentation algorithm can almogree major steps and a performance test has been performed
perfectly find them. Valid region assignment restarts aftéter each step. The 3rd step can be incorporated only if the
reaching to each segment of these types. phonetic contents of spch utterances akmown. Test results

are outlined in Table (2). According to this table and tests

L oo which are performed by Glass and Zue, our segmentation
% — strategy is capable of detecting almost all of the boundaries that
;-Ega are captured in a dendrogram with low position errors and
= 100 acceptable insertion rate [1]. Table (2) summarizes the
= |_| Hﬂﬁﬁ performance results after using each algorithm. This table also
o5 SO0 10000 shows that incorporating additional information can improve

Segment Lenght in Sarmples the performance of overall segmentation scheme. In addition to

Figure 5: A sample length histogram which is computed foiicceptable precision, our overall segmentation scheme has very
segments labeled &’ in TIMIT transcriptions. low computation cost and it can be implemented in real time on
an average Pentium PC. An important advantage of our
algorithm is that no training or threshold computation is needed

Table 1: TIMIT segments length Information.

Segment Min Max Ave. Std. in realizing it. On the contrary, many known segmentation
aa 213 7735 2026 371 865.244 algorithms usually depend on critical thresholds which must be
ae 943 5259 2153.972 716.61P  ostimated before using them. Training or threshold estimation
ah 506 4480 1444.029 S67.88p phase is generally the most critical and difficult step in realizing
ao 520 5073 1941.280 732.38p  segmentation algorithms. This is possibly the most important
aw 1077 6057 2873.734 884.59p  advantage of our proposed algorithms.

b 63 949 283.678 116.993
bcl 209 3114 1084.352 443.76
@ (b) (©)
Presegmentation 0.54% 3.5 msec >150%
1st Search Alg. 2.84% 6.8 mse 22.6%
2nd Search Alg 3.08% 6.9 mse 12.5%
z 460 4240 1433.151 559.89
zh 670 4218 1460.825 624.678 Table 2 : Results of performance tests for each step of the

proposed algorithms, (a) Average missing rate, (b) Average
boundary position error, (c) Average Insertion rate.
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