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ABSTRACT cation parameters, or weights, which estimate the magnitude of
the effects of a factor. This will efficiently reduce the number of

This paper discusses a methodology using a minimal set of segarameters to maximally 84 from 240. Ouitial investigation
tences to adapt an existing TTS duration model to capture inteshows that this is a viable hypothesis.
speaker variations. The assumption is that the original dura-
tion database contains information of both language-specific and 2. THE SOURCE MODEL
speaker-specific duration characteristics. In training a duration
model for a new speaker, only the speaker-specific informationhe model of the source speaker is a Mandarin duration model
needs to be modeled, therefore the size of the training data can@viously trained on three and half hours of speech from a single
reduced drastically. Results from several experiments are compeaker [4]. The data are organized in a category tree, and the data
pared and discussed. in each terminal category are used to train dtiplicative model

asin Equation 1 [6, 5]:
1. INTRODUCTION
This paper investigates various methods to adapt an existing text- ur(p) = Dmean(p) > D1{f1) > .. x Dn(fn) (1)
to-speech (TTS) duration model (the source speaker) to any new
speaker (the target speaker). We use Mandarin as a test case. MhereD:( fi) is a parameter whose value reflects the contribution
goal is to capture the target speaker's duration pattern with veof factor: when it has levelfi, while Dmean(p) denotes the
few input sentences and to produce a model that performs well aoefficient of the corrected mean duration of the phpne

new text input.
The Mandarin category tree is flat, with no more splitting after the

A basic assumption is that the source speaker's duration modiitial split by six major ®und classes. There are six ltiplica-
contains information of both language-specific and speaketive models corresponding to the six major sound classes. Each
specific characteristics. If we can decompose these two commodel was fitted with 14 factors. The sound classes and factors
ponents, then the task of training a target model is reduced &ue listed below.

training the speaker-specific component, which in principle can

be estimated with less parameters. The size of the training da¥@und Classes:

therefore can be reduced, or if the size remains the same, ther
would be more observations per parameter, hence a more reliable ™
model. 2. Fricative (F): 5 fricative$, s, x (palatal), S (retroflex),.h

Vowel (V): 15 vowels, including 4 diphthongs.

We will show that if the parameter set is known, the size of the 3. Stop and affricate closure (C): 6 stops and 6 affricates.

training corpus can be reduced drastically by using a greedy al-4. Stop and affricate burst and aspiration (B): 6 stops and 6
gorithm. In the Mandarin test, 9 greedily selected sentences are affricates.

sufficientto estimate all 240 parameters from the source model for
the target model. The Mandarin model consists of six sub-models,
corresponding to six major sound classes. Each sub-model has 14

factors. The 240 parameters represent levels in the 84 factors. 6. Sonorant consonant (S): 8 sonorant/voiced consonants, in-
cluding 2 nasals, 3 on-glidels,and 2 voiced fricatives.

5. Nasal coda consonant (N): 2 nasal codas. 1 relatively rare
retroflex coda is also included here.

We analyzed the recording of these 9 sentences from six target

speakers and evaluated the performance of models fitting diffgtzctors:

ent numbers of parameters, ranging from a model that uses only

one parameter, the speaking rate, to a model that uses all 240 pal. Phone idetity

rameters from the source speaker's model. Both extremes are NO  Tone: Mandarin has 4 lexical tones, one sandhi tone, and a
ideal. On the one hand, one parameter is not sufficient to cap- neutral tone which is similar to an unstressed syllable. The

ture the target speaker's speaking style. On the other hand, 240 tone levels may be combined differently in each terminal
parameters are stretching the limit of the corpus, where many pa- category

rameters were estimated with just one observation.
3. Preceding phone: Grouped by phone classes. The division is

We have observed that the ordering of the effects of factor levels  different in each category. This factor has a strong effect in

tends to be preserved across speakers. So we hypothesize that a the vowel category, indicating that the vowel duration is af-

new speaker's characteristics can be captured by a set of modifi- fected by the sound class of the preceding phone. This factor
has much weaker effect in the initial consonant categories.



c: closure ?
v: vowel
b: burst
i n: nasal coda
f: fricative
s: sonorant

»

Preceding tone: Mostly distinguishing whether the preced-
ing tone is a full tone or a neutral tone.

5. Following phone: Grouped by phone classes. The division
is different in each category. For example, vowel height dis-
tinction has an effect in the fricative category but not in the
nasal coda category.

6. Following tone

7. Prominence: Manually transcribed from the speech
database.

8. Position of the syllable in the wdrdistance to the itial ‘ ‘ ‘ ‘ ‘ ‘
position: Typically coding three levels, 0, 1, and 2.

9. Position of the syllable in the word (final)
10. Position of the word in the phrase (initial) Figure 1: Speaking rate coefficients of different sound classes
11. Position of the word in the phrase (final) from six speakers
12. Position of the word in the utterance (initial)
13. Position of the word in the utterance (final) 4. DATA
14. Syllable structure
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Six sentences were selected from a corpus of 15620 newspaper
A total of 292 parameters were used in the original model. Somgentences by the first run of the greedy algorithm selection. These
parameters cannot be estimated from text, such as the promineRgtences can be used to estimate the 240 parameters we targeted
level, and some parameters have very little effect, suthea®l-  in the greedy search. To increase the number of observations we
lowing tone so we trim the parameters to 240 as the basis of cofun the greedy algorithm iteratively to select a total of four sets

pus text selection. of sentences, each set containing 6 to 7 sentences. The sentences
were recorded by 10 speakers; some read it with varied speaking
3. TEXT SELECTION rate. We have analyzed the first run of sentences in normal speak-

ing rate from six of the speakers. After the initial analysis, we
Once the statistical model is determined and the parameters §gnd that some parameters cannot be estimated due to reading
known, we can use a model-based greedy algorithm to reduce g crepancies that destroy some factor levels, primarily from the
corpus size. The best-known algorithm for optimizing coveraggsertion of glottal stops before word-initial low vowels. Three
is the greedy algorithm as applied to set-covering and matroighore sentences were selected to compensate for the loss.
covering problems. For general Analysis-of-Variance models, the
optimal text selection is transformed to a linear parameter estim@he analyses performed for this paper are based on this 9-
tion problem, which can be solved by finding a minimal set okentence, 6-speaker database. It contains 4346 phones, with 1529
sentences whose design matrix is of full rank [2]. vowels, 599 closures (phrase-initial ones excluded), 662 bursts

) ) with aspiration, 561 nasal codas, 401 fricatives, and 594 sono-
A feature vectorf (¢) = (f1, f2, ..., fn) cOrrespondingto a given gnis.

phone segment can be uniquely represented as a compound row

vectorr(f), in which each sub-vectoy, (f) encodes the level on We use this corpus to test a few models, starting with one that es-
the corresponding factor. One way to do this is to have the veg@imates only one parameter per target speaker, the mean speaking
tor component corresponding to the level in the factor set equgdte.

to 1 and the remaining components equabtoUsually, the last

level is represented as a vector-el. Thenr(f) is defined as 5. SPEAKING RATE

(r1(f),-.-,rx(f), 1), where the last corresponds to the con-

stant term in the model, and denotes the total number of terms Some voice conversion systems such as the one reported in [1]
in the Analysis-of-Variance model. The design matrix for a sensimply convert the source duration model to the new speaker by
tence consists of the matriX (s) whose rows are computed as detecting and changing the speaking rate. Speaking rate can be
indicated. The design matrix for a corpdisis a vertical stack of estimated quickly given any input, which is an undeniable advan-
matricesX (s), wheres ranges over’. Let D(C') be the corre- tage [7]. However, its effectiveness rests on whether the duration
sponding vector of observed duratid? be the column vector of of phones is stretched or compressed uniformly when speaking
parameters, then we have(C) = X(C) - P. P is estimable rate changes [3]. We compare two models: using only the coef-
if and only if the matrixX (C') is of full rank. The optimization ficients of the source model described in Section 2 to predict the
problem can now be formulated as finding a minimal subsét,of duration of the six new speakers, or to apply a speaking rate mul-
say,C’, so thatX (C") is also of full rank. We can achieve further tiplier for each speaker to the original model. We compare these
reduction of text selection if the parameters in multiple modelsvo conditions using root mean squared deviation of observed and
are considered simultaneously. This is done by concatenating alledicted duration of the 36 models (6 speakers, each with 6 mod-
the parameters from different models in the vedtorThis kind  els for different sound classes). 14 models perform better with the
of concatenated design matrix can handle any kind of classificapeaking rate multiplier, 19 models perform worse, and 3 models
tion tree with each leaf characterized by an Analysis-of-Variancare practically identical. One question is why the rate multiplier
model. does not work as well as expected.



We investigate this question further by training the usual six mod-
els for each speaker, but using only two factors: phonetigen | Speaker 1 2 3 4 5 6

and speaker identity. The coefficients obtained from the speaker VOWel 083 0.77| 0.77| 0.80 | 0.83 | 0.81
factor are plotted on the y-axis in Figure 1. The six speakers, or{ BurstAsp | 0.94| 0.93| 0.93| 0.94| 0.95 | 0.91
dered from fast (with smaller coefficients) to slow (with larger co- | Closure 0.770.73| 0.80 | 0.75] 0.71 | 0.78
efficients), are shown on the x-axis. The plotting symbols indicate| Nasal Codal 0.75 | 0.71| 0.65| 0.81 | 0.71 | 0.74
the models by sound classes: v, ¢, b, n, f, s represent vowel, stop Fricative | 0.87 | 0.78 | 0.75| 0.81| 0.70 | 0.73
and affricate closure, stop and affricate burst, nasal coda, fricat Sonorant | 0.82 | 0.66 | 0.74 | 0.71 )| 0.80 | 0.70

tive, and sonorant, respectively. The thick line going through the,p, 0 1. correlation of estimated and observed duration—Model |
middle shows the mean rate of each speaker. If phone durations

are stretched uniformly from fast to slow speakers, we expect thel? _ k k1 kn
lines connecting phone classes not to cross. This is apparently no ur(p)ic = Dmean(p)” x DI(f1)7 x ... x Du(fn)™" (2)
the case.

Equation 2 makes sense if the parameter coefficients of a given

The total lack of consistency in the scaling of sound classes acrd@§tor from different speakers are in scale. It was shown that
speakers is interesting, particularly considering that two pairs §°Wels in English do indeed maintain their scale under different
co-varying coefficients B/F and V/N, which show that there is £rosedic conditions [5]. Our data show that the phone levels in the
high level of consistency within speakers. For all speakers, tH0ne idetity factors are typically in scale across speakers. \We
burst and fricative coefficients are quite similar, with four speakSNOW the cross-speaker coefficients of the vowel identity factor
ers showing nearly identical values. The vowel and nasal coda c@?d the tone factorin Figures 2 and 3. In Figure 2, the apical vow-
efficients of each speaker are also comparable. Note that fricativB§ J» Qare consistently the shortest for all speakers, high vowels
and plosive bursts are similar, in particular, affricates may be ank.U» U are in the next group, while low vowetsand diphthongs
lyzed as the combination of a stop followed by a fricative. Vowel&re the longest.

and nasal codas are similar in that they comprise the rhyme of trIE'Tagure 3 illustrates the cross-speaker consistency from the tone

;yllable. Apparently the shared properties of B/F or V/N are su actor of the vowel category. which shows the effect of tones on
ject to contextual factors in the same way for the same speaker . . )
. ) i ) vowel duration. The factor successfully captures an impression
which contributes to the perceived speaking style of the speaker. . - . o
no{ed during the recording session that some speakers maintain

Across speakers the scaling of sound classes becomes unpredicat- .
P 9 Predi&liar contrast between full tone and neutral tone syllables, while

able. A good example is that bursts and fricatives are proportioli, me hardly make any distinction. The tone coefficients show that

ally long for speaker 1 but are short for speaker5. At least part ésgr all speakers, the neutral tone labeleddms the strongest ef-

the durgtional characteristics of a spgaker Is reyealed in th.e Ier'qect in shortening vowels. The magnitude of this effect is different
proportion of sound classes. Modifying speaking rate unlforml¥or each speaker. It appears that the target speaker's characteris-

will not be effective. tics can be captured by multiplying the source speaker's coeffi-

If we use pre-selected input text, then we are able to estimati€nts with aweight. In this case, only one weight, or modification
many more parameters given that the text is optimized with refeParameter, needs to be estimated instead of 5 tone parameters.
ence to the intended parameters. One additional advantage of s

. . roceed with experiment 1 to assess the validity of this as-
ing pre-selected sentences is that many procedures such as speech” . ) . . .
: . e umption for all factors. Given a matrit of m x n dimensions
segmentation and parameter identification can be automated. ln .= - .
. . . . containing coefficients from a factor witlh levels and: speak-
the following section we identify a set of parameters that can be

used effectively to adapt duration models to the target speaker. €rs, we vyant to know whether can _be approximated b - WV,
whereF' is am x 1 vector functioning as the common parame-

6. THE TARGET MODEL ter vector of factorf for all speakers, antl’ is al x n vector

of weights. We obtained’ andWW by singular value decomposi-

Given that our corpus was based on greedily selected sentenJ:I g which retums two orthogonal matrices and a diagonal matrix

X : . . ; -
and was amended for performance errors, we can use the cor-— UDV?, whereD is the diagonal matrix. The best approxi

pus to estimate all the parameters as in the model of the source

speaker, following Equation 1. The performance of these models, 3 "F"\ F

referred to collectively as Model |, is used as the baseline perfor- o g \Q,i W%g

mance guide to judge subsequent experiments. Model | is trained & © | ] a e S}

separately for six speakers, where the tree categorization and fac- % o | & x\§7‘5§§ R

tor levels were identical to the final revision of the model with 240 g S |B f ° b 6

parameters described in Section 2. Table 1 gives the correlation “S o H§@<g§§

scores of the predicted duration and the observed duration from § < 7| g/ \u> ~__ u

36 models, sound classes in rows and speakersin columns. € < >< /Q Q—
8 91 \Q — J/

We proceed to test Model Il, given in Equation 2, which assumes /

common coefficient®mean(p) andDi( f1) for all speakers. For 3 J : : : :

each speakekK we only need to estimate a set of modification 1 2 3 4 5 6

parameteréz:. Speakers

Figure 2: The coefficients of the vowel identity factor
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g °'1§< Speaker 1] 213 4576
2
5 3 9§<5 — Vowel 0.81| 0.74| 0.76 | 0.78 | 0.79 | 0.80
g8 ¢ 7§§i§/% Burst/Asp | 0.91 | 0.93| 091 | 0.93 | 0.94 | 0.91
@ S——ao / Closure 0.73| 0.73| 0.79| 0.69| 0.66 | 0.78
g o o o Nasal Coda| 0.70 | 0.67 | 0.61 | 0.76 | 0.59 | 0.72
§ ' Fricative 0.83| 0.75| 0.71| 0.80| 0.65| 0.69
g o 0 Sonorant | 0.67 | 0.54 | 0.68| 0.56 | 0.73 | 0.69
g o
E Table 2: Correlation of estimated and observed duration—Model
© g : ‘ ‘ ‘ ‘ ‘ I, experiment 1, using weights and common vector obtained from
" 2 3 4 5 6 singular vector decompit®n to predict target speaker's duration.
Speakers
Figure 3: The effects of tones on vowel duration. Speaker 1 2 3 4 5 6

mation toA is v/dx - u1 - v1. We takeu: , the first column vector of \Vowel 0.7410.67 | 0.72| 0.75| 0.77 | 0.77
U, as the common parameter vectrandy/d; - v1 as the weight Burst/Asp | 0.89 | 0.93| 0.89| 0.941 091 0.90
vectorW, wherew; is the first row vector of/!. We next com- Closure 0.61)0.61) 0.61 | 0.67| 0.50 | 0.39
pute eigenvalues. The first eigenvalue is very high in the majority| Nasal Coda 0.65| 0.69 | 0.55 0.75) 0.63 | 0.71
of matrices, suggesting that most of the variation can be captureg Fricative 0821 0.76 | 0.68| 0.80 | 0.64 | 0.65
in the first eigenvector and the assumption underlying Equation 2._Sonorant | 0.75] 047 0.58 | 0.55 ] 0.72 | 0.65
is supported.

Table 3: Correlation of estimated and observed duration—Model

There is an alternative method to calcul&te We substituted !, €xperiment 2, using weights and the source speaker's coeffi-
the factor level codes in the duration data matrix of each speak@fnts to predict target speaker's duration.

with the corresponding’ entries and fitted a robust regression

model to predict the observed duration. The coefficients of thim two stages: text selection and weight estimation. Assuming the
model are used as weighitE’. We then estimate duration with source speaker's model, the size of the training corpus for the tar-
F andW’. The correlation scores of the predicted and observeget speaker can be reduced dramatically (nine sentences for the
duration are given in Table 2. The result is comparable to thpresent study). The small database reduces data collection and
baseline correlation scores shown in Table 1, which is very gogutocessing time. The source speaker's model can be adapted to
considering the 3 to 1 reduction of the number of parameters. the target speaker with a set of weights, which is an effective way

to capture speaker-specific characteristics.
Experiment 1 was performed primarily to test the consistency

across speakers and to assess the possibility of using weights. The 8. REFERENCES
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