BTH: An Efficient Parsing Algorithm for Word-Spotting
Yasuyuki KONO, Takehide YANO, and Munehiko SASAJIMA

Kansai Research Laboratories, Toshiba Corporation
8-6-26 Motoyama-Minami, Higashi-Nada, Kobe 658-0015, Japan
{kono,yano,sasa} @krl.toshiba.co.jp

ABSTRACT

This paper presents a new parsing algorithm, BTH, which is
capable of efficiently parsing a keyword lattice that contains a
large number of false darms. The BTH parser runs without
unfolding the given keyword lattice, and thus it can efficiently
obtain a set of word sequences acceptable to the given grammar
as the parser result.

The algorithm has been implemented on Windows-based PCs
and is tested by applying it to a car navigation task that has a
scale of practical applications. The result indicates promise in
implementing the function of a sentence utterance-based
spontaneous speech understanding in next-generation car
navigation systems.

1. INTRODUCTION

Since spoken language is not only an essentiadl means of
communication but also the most natural one for human beings.
Users desire computer systems with this type of communication.
We had previously developed TOSBURG-II, a spoken language
dialogue system [1][2]. It picked up the acceptable keyword
sequence as a sentence from the keyword lattice obtained from a
word-spotting engine for the task of selling hamburgers with a
very limited vocabulary, and performed the semantic analysis /
intention understanding. The system recognized only
meaningful words, i.e., nouns and verbs, received a plausible
keyword sequence as a sentence, and responded to the user by
synthesized voice. The TOSBURG-II study revealed the
followings: (1) by applying word-spotting technology, it is
possible to cope with phenomena characteristics of spoken
language such as unnecessary words or unfixed forms, (2) false
aarms which are unavoidable in the word-spotting process can
be also corrected by sentence analysis.

In order to expand the scale of the task which a spoken language
dialogue system is capable of executing and to apply the system
for practical tasks, it is necessary to correspond to a large
vocabulary and a large-scale grammar. However, expansion of
vocabulary and grammar causes the number of recognized
words and the size of the corresponding keyword lattice to
increase explosively. This poses a problem in that the processing
time required for analysis becomes huge.

given keyword lattice. This parser (1) holds hash tables for each
sentence-type template, (2) calculates the set of sentence-types
to which each node in the lattice can belong by referring to the
table, and (3) propagates the list to the nodes following each
node. It can efficiently obtain a set of acceptable word sequences
to the given grammar as the parser result.

We have implemented this algorithm on PCs and tested the
method by applying it to a car navigation task. In this work, the
vocabulary for recognition exceeds 700 words, and the keyword
lattice that can generate over 1,000,000 candidate word
sequences is usually obtained as a recognition result. Also,
parsing of such alarge-scale lattice can usually be completed in
real time in around 1 second by a PC of some generations ago
(486DX2 50MHz), i.e, about 35 MIPS. The result shows
promise in implementing the function of spoken-language
understanding from sentence utterance in next-generation car
navigation systems equipped with RISC MPUs of about 70
MIPS.

2. THE BTH PARSER

Our research goal is to develop a generic framework for spoken
interfaces that runs on practical applications with considerable
scale of task. We cannot expect a 100% recognition rate with
current speech recognition technologies, even if strong
constraints are applied as a language model. It is especialy
difficult to correctly recognize bound words, i.e., words that
have no meanings themselves, e.g., postpositions. We have
designed our speech understanding mechanism based on the
following policies:

« Embodying scalability so that it works well in
practical applications.

« Analyzing/understanding a user's spontaneous
utterance with the grammar that accepts a
sentence as a word-sequence consisting only of
free words, i.e., words that have meanings
themselves, e.g., nouns and verbs.

» Recognizing a user’s utterance by the keyword-
spotting technique. A list of possible word
sequences is obtained by parsing a keyword-
lattice generated from a word-spotting result.

To realize our goal, it is crucial to establish the technology for
post-recognition process that can efficiently extract plausible
sentences/word-sequences by dealing with the keyword lattice
obtained from the word-spotting engine. We have developed the
BTH parser which is capable of efficiently parsing a keyword
lattice that contains a large number of false alarms. This section
describes its features and techniques.

We have developed BTH, Bun (meaning "sentence" in Japanese)
Template Hash, a parsing algorithm which is capable of
efficiently parsing akeyword lattice with alarge number of false
aarms. When a keyword lattice is large, thelist of possible word
sequence generated by unfolding the lattice is huge too. Parsing
the candidates in the list one by one causes an explosion of
calculation time. The BTH parser runs without unfolding the

2.1. Keyword-L attice Parsing Problem

One technique for parsing a lattice structure that is obtained by
speech/handwriting recognition is to sequentialy apply a natura
language parser one by one to candidate sentences which are
generated by unfolding the lattice. The TOSBURG-II employed
a generalized LR parser [3], which analyzes a keyword lattice
generating midway candidates and pruning hopeless paths [1,2].
The keyword lattice, however, generated by a speech recognizer
with a large volume of vocabulary and grammar, contains
complicated structure with many nodes and formsin cases. It is
hard to analyze each candidate generated by unfolding the lattice
in the light of both calculation time and memory.

It is essential to retrieve huge amount of both vocabulary and
grammar to develop a speech interface of a practical application.
We collected 389 example sentence utterances that are natural
and needed by drivers who use car navigation systems with
speech recognition. They include actua utterances made by one
of us while driving a car and while being a passenger in a car.
Then we analyzed them and made grammatical rules that apply
to those examples. We also designed structures of user’s

intentions by classifying the collected utterances into 5W
(Where, What, Which, When, Why) and 2H (How, How-Much).

(“Deguchi-no-mae-no-saigo-no-service-area-ha-doko?”). 36
keywords, i.e., 5 correct and 31 false alarms, were spotted in this
example. When only connectable time constraints are applied,
over 4 million plausible word sequences can be generated, each
of which is a different path from the start node to the end node,
if the lattice is unfolded. Thus a lattice parser, which is capable
of parsing without unfolding a given keyword-lattice and
generating a set of acceptable word sequence candidates by
given grammar, is required.

2.2. Parsing a Keyword-L attice with
Template Hash Tables

Based on the following viewpoints, we have developed the BTH
(Bun [meaning "sentence" in Japanese] Template Hash) parser,
which is an efficient lattice parser for word-spotting that
satisfies the above-mentioned requirements:

Real-time processing in the scale of practical applications on
conventional calculation power: Both more vocabulary
and less calculation are required to develop a practical
speech interface. We aimed to realize a parser working in
real-time on 70-80 MIPS RISC MPUs, i.e., the MPUs that
are expected to be applied in next-generation car
navigation systems.

In parallel with the analysis of sentence patterns and grammar,

we picked up keywords from the example utterances. F@rammatical representation taking into account both the

instance, the sentence “Deguchi-no-mae-no-saigo-no-service-
area-ha-doko? (Where is the last service area before the exit?)"
was classified into the sentence-type group of “Where”, and five
words, i.e., deguchi (exit), mae (before), saigo (the last),
service-area, and doko (where), were selected as keywords. As a
result of the analysis, about 700 words were picked up as
recognized keywords and were classified into about 110 word-
classes (parts of speeches).

épeech Input: Deguchi-no-mae-no-sai go-no-servioeare&wadok%

Y

= li///' SO
iy
8

Figure 1: An example of a keyword lattice obtained from the
word-spotting engine.

As the vocabulary for speech recognition becomes larger, the
number of false alarms in a recognition result increases and the
corresponding keyword lattice gets huge. Figure 1 depicts the
example keyword lattice which is obtained as the speec
recognition result when a user uttered the sentence above

en

recognition method and the application: It is difficult

to construct a comprehensive and accurate grammar for
actual utterance even if the task to which it is applied is
limited, because word order and syntax in actual utterance
are wide-ranging. A weakly constrained grammatical
representation is required to cope with noticeable
phenomena in speech, such as inversions. On the other
hand, it is pointless for the parser to accept sentences
which the application program cannot execute. A
grammatical representation that generates very
complicated sentences, e.g., one employing recursive
rules, would be too expressive for practical use.

Parsing without unfolding the given lattice: In the case of a

large vocabulary, a recognition result lattice from a word-
spotting engine includes many false alarms as mentioned
above. It costs huge calculation time if the parser analyzes
unfolded candidates one by one. Therefore, a lattice parser,
which is capable of parsing without unfolding a given
keyword lattice, is required.

The BTH parser embodies the following features:

Grammatical representation based on templates of word-

class sequences: The grammar is represented as a set of
templates, each of which forms a word-class sequence. An
interface designer collects sentences in a task and
classifies them into sentence-types, i.e., word-class
sequences. The parser analyzes a keyword lattice utilizing
the template sets. The grammar must be represented non-
recursively.

eration of a hash table from the sentence-type template:

As a pre-process of the parsing, the given sentence-type
template is compiled into a hash table, whose element is a

correspondence between the appearance of a certain dictionary for each inter-processing list of the node in the list of
word-class in sentences and the established set of processing nodes.

sentence-types which applies to the word-class. A Bun . . .
(meaning “sentence” in Japanese) Template Hash table i'ghen the parser repeats the propagation process while the list of

composed of representations, each of which means “if p(;oce;sing nodes is no_t empty. In the p_ropaga_tion process,_the
word of a certain word-class is recognized at a certaii9!lowing steps are applied to each node in the list of processing

order in a sentence, the word of the order applies to eithBPdes:

of certain sentence-types.” 1. Take one node as the current target from the list
of processing nodes and check whether the list
of unprocessed antecedent nodes is empty. If it
is not empty, check the next node in the list of
processing nodes.

Parsing of a lattice by propagating belonging sentence-type
information: The parser scans the given lattice from the
start node. At each node, the set of sentence-types, to
which a certain node in the lattice belongs, is calculated

by examining set calculations between the corresponding > f the list of unprocessed antecedent nodes of a
elements in the hash table and the set of sentence-types node X in the list of processing nodes is empty

propagated from the nodes connected just in front of the propagate the inter-processing list of X to all
node. Then the set is propagated from the node to succeeding nodes and add them to the list of
connecting node(s). By repeating the method, the set of processing nodes, and then remove X from the
sentence-types to which the given lattice belongs is finally list.

obtained.

)))]) ~ 3. At each node to which the inter-processing list
The detailed parsing process is described in the next subsection. of its antecedent node is propagated, re-calculate

he inter-pr ing list.
2.3. Parsing Process (e Inter-processing fist

If the list of processing nodes is empty when the step 3 above is
To parse a keyword lattice, the BTH parser utilizes 4 kinds @ompleted, the inter-processing list of the end node is the set of
information structure, i.e., a dictionary of word-classes angcceptable sentence-types by the lattice. The parser result, i.e.,
words, a dictionary of patterns of word-class sequences,tife set of acceptable word-sequences by the lattice, is obtained

sentence-type hash dictionary, and a list of processing nodggm the set of sentence-types by re-scanning the lattice. Figure
The list of processing nodes is the set of nodes that are $h&hows an example parser result.

current targets of processing. Each node in the lattice holds
kinds of data, i.e., a list of antecedent nodes, a list (s
unprocessed antecedent nodes, and an inter-processing
composed of sets of sentence-types, each of which is t
sentence-type to which the node belongs at a certain order.

e

] W5

W

)
C3
t]| 8% 9 A | St | B e | it st [0 St

Figure 3: Sample screen of the list of word-sequences.

The cost of the entire parsing process can be estimated from the

= — usssd cost of set calculations to obtain the inter-processing list for each
Figure 2: Sample screen of the parser result. node. The maximum possible number of set calculations, i.e.,

unions and intersections, is equal to the number of links in the
lattice times the number of words in the longest word sequence.

Given a new lattice to analyze, at the beginning of the parsingis the worst case, however. Much less calculation is required
process, the BTH parser (1) copies the list of antecedent noG§$he most cases.

to the list of unprocessed antecedent nodes for each nodes in the
lattice, (2) adds all the nodes which may possibly be heads of
result word sequences to the list of processing nodes, and (3)
sets the initial score that is obtained from the sentence-type hash

3. DIALOGUE SYSTEM

We have implemented a spoken dialogue system using the BTH
agorithm, which is able to respond to queries respecting
locations made by a user while driving a car. The system is
composed of four independent software modules, i.e., the
dialogue module that employs the BTH parser, the application
module, the word-spotting engine, and text-to-speech
synthesizer. The first two modules run on a Windows NT based
PC and the other two run on an EWS. The modules run
collaboratively, communicating with each other via socket-
based messaging. As shown in Figure 4, the application module
has a map-based appearance, which is based on ProAtlas, a map
software developed by ALPS Mapping Co., Ltd. It simulates car
driving by re-playing pre-recorded position data obtained from
the GPS (Global Positioning Satellite) system.

The application module simulates driving a car and continuously
notifies the dialogue module of the simulated current position at
regular intervals of time. When a user asks a question in

Nishinomiya Interchange,” and the dialogue module notifies the
synthesizer module of it.

4. CONCLUDING REMARKS

We have designed an efficient keyword lattice parser, BTH,
which accepts a user’s spontaneous speech input, and developed
a PC-based speech interface. Given a grammar consisting of a
set of production rules with neither recursive calls nor loops, the
BTH parser performs parsing without unfolding the given
keyword lattice. We have tested the parser by applying it to a
task of car navigation involving over 700 words of recognized
vocabulary. The developed speech interface is able to respond to
a user’s question within a few seconds of the question being
asked.

In the case of the example task, it is common for over 100
spotted words to be notified from the recognition engine, and
consequently over 1 million possible word sequences can be
generated by unfolding the corresponding lattice even if word-

\]aoar']e&, edg., “Deguchi_no_mae_no_saigo_no_service_area_hadaSS bi-gram is applled to the lattice. Our methOd, hOWeVer, is
doko? (Where is the last service area before the exit?)", tAble to parse such a large lattice in a practical time. The result
word-spotting engine recognizes the utterance and notifies tRBOWS promise in implementing the function of spontaneous

dialogue module of a word-lattice as depicted in Figure 1.

The dialogue module analyzes the word-lattice by employing

speech interface in practical applications.

REFERENCES

the BTH parser and obtains a list of candidate word-sequences,

which is sorted in the descending order of the initial score of 1.

each candidate, which is calculated from phonetic scores of
words of the candidate. Each word-sequence candidate is
converted into a user’s intention in the form of a typed feature
structure, and is resolved by using current position information
and the knowledge base. The knowledge base is a semantic
network that contains all the knowledge required to solve
guestions about locations on the displayed map.

e

osrogora g\

=L

\
RN 2o
.\mmﬁ@ B

\iver
KR 1o * § / |
fitiacl AR 14 //%um =y
1 A\ >, L iy 4
X Ny Lo o Ay Ay ; g
=

o | - |

- bladelslo)|
]| 6 % D A || Daesw [ETS | . S | P ——

Figure 4: Sample screen of the application.

The score of each candidate is revised taking account of the cost
of problem solving, and the list of the candidates is reordered.

As a result, the candidate with the best score is selected and the
text of the answer corresponding to the question is generated,
e.g., "“Amagasaki Service Area is the last service area before the

Takebayashi, Y., Tsuboi, H., Kanazawa, H., Sadamoto,
Y., Hashimoto, H., and Shinchi, H. “A Real-Time
Speech Dialogue System Using Spontaneous Speech
Understanding”,|IEICE Trans. Inf. & Syst., E76-D:
112-120, 1993.

Takebayashi, Y., Tsuboi, H., and Kanazawa, H.
“Keyword-Spotting in Noisy Continuous Speech Using
Word Pattern Vector Subabstraction and Noise
Immunity Learning”, Proc. ICASSP ‘92, [I-85-88,
1992.

Tomita, M. “An Efficient Word Lattice Parsing
Algorithm for Continuous Speech Recognitiotroc.
ICASSP '86,1569-1572, 1986.

