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ABSTRACT

In this paper, we present a word counting method that enables
speech recognition systems to perform reliable barge-in detection
and also make a fast and accurate determination of end of speech.
This is achieved by examining partial recognitionhypotheses and
imposing certain “word stability” criteria. Typically, a voice activ-
ity detector is used for both barge-in detection and end of speech
determination. We propose augmenting the voice activity detector
with this more reliable recognition-based method. Experimental
results for a connected digit task show that this approach is more
robust for supporting barge-in since it is less prone to interrupting
the announcement when extraneous speech input is encountered.
Also, by using the early endpoint decision criterion, average re-
sponse times are sped up 75% for this connected digit task.

1. INTRODUCTION

Voice activity detectors (VADs) are used in continuous speech
recognition applications to determine speech events. They are used
to mark the beginning and end of a spoken set of words. These
detectors, however sophisticated, have the limitation of not being
able to differentiate between in-vocabulary and out-of-vocabulary
speech since their decisions are based solely on energy magnitude
and duration. In typical speech recognition applications, there is
a system prompt that solicits speech input from the user. New
users typically listen to the entire system prompt prior to respond-
ing, whereas experienced users interrupt the prompt by speaking
over the prompt (referred to as barge-in). Most speech applications
support barge-in by using a VAD to detect the onset of speech in-
put and disabling the prompt when speech is detected. However,
supporting a reliable barge-in scheme is a challenging issue. Re-
cently, some research efforts have been directed towards making
barge-in more robust[1][2]. Ideally, we would want to interrupt
the prompt only if a user starts to speak valid, in-vocabulary speech
and not interrupt the prompt for invalid speech inputs which may
be coughs, breath sounds or out-of-vocabulary words. A voice ac-
tivity detector cannot be used for reliable barge-in since it will in-
terrupt the announcement without determining if the initial speech
segment corresponds to in-vocabulary speech. In this paper, we
will present a method that examines partial recognitionhypotheses
from a speech recognizer to make a decision that a valid keyword
exists in the speech utterance. While the VAD-based barge-in de-
tector will trigger on most every extraneous speech or noise event,
a recognition-based barge-in detector, which we will discuss in this
paper, is significantly more reliable in these cases.

The other aspect that this paper addresses is improvement of

average response times in known-wordlength continuous speech
recognition. Response time is the time elapsed from the end of
speech input to when the recognition result is obtained by the rec-
ognizer. By using only a VAD to detect the end of speech, the
response time is at least greater than the inter-word gap time of the
VAD, even if the recognition algorithm runs in real-time. The rea-
son for this is that the inter-word gap time needs to elapse with no
speech activity before the VAD can declare end of speech input. In
this paper, we propose a scheme to detect the end of a speech utter-
ance sooner than the time it takes a VAD to determine the endpoint.
This is achieved by examining partial recognitionhypotheses and
counting the number of words in each path. If all the viable paths
have “stabilized” to a point where no new hypotheses are likely to
be introduced, an endpoint decision is made. Using recognition to
make this endpointing decision is reliable and, on average, the re-
sulting endpoint occurs significantly sooner when compared to the
VAD endpoint. The additional benefit from a faster response time
is that the recognition resource is freed up earlier to process the
next request. This means that we can, on average, process more
calls or make do with less computational resources.

The organization of the paper will be as follows: In the next
section, we will give a brief overview of the recognizer that we
use in our system and discuss how the recognitionhypotheses are
stored in a decoding tree. In section 3, we describe the word count-
ing algorithm that periodically examines the decoding tree and dis-
cuss its use for barge-in and early endpointing. Experimental re-
sults relating to response times for barge-in and endpointing on a
connected digit task are given in section 4 followed by conclusions
in section 5.

2. OVERVIEW OF THE RECOGNITION SYSTEM

The recognition system that we use is a frame-synchronous
beam search algorithm [3] that employs the wave decoder de-
scribed in [4]. Twelve LPC-derived cepstral coefficients, normal-
ized energy and their first and second order derivatives constitute
the 39-element feature vector [5]. The feature vector is updated ev-
ery 10 ms and is computed over a 30 ms window. Acoustic speech
events are modeled as continuous density hidden Markov models.
Most of the models are dedicated to modeling in-vocabulary key-
words. However, a handful of “filler” models attempt to model
out-of-vocabulary speech events. In order to support wordspot-
ting, the grammar allows filler (also known as garbage) words to
optionally precede and follow keyword speech.

The recognition problem boils down to a search for the most
likely (highest likelihood score) word sequencew1; w2; :::;wn



that best explains the input speech feature vector sequence un-
der certain grammar constraints. A word network detailing which
words can precede and follow which words is compiled from
the grammar specifications. A phone network that details which
phones can precede and follow which phones is then derived from
the word network. The algorithm uses Viterbi decoding to find the
optimal phone sequence under the specified grammar constraints.
A full search of all possible phones in the network to find the best
phone sequence is too large and a beam search significantly re-
duces the search space and lends itself well to practical implemen-
tations. In a beam search, only those phone sequences that are
likely (i.e., have likelihood scores within a prescribed difference
from the current best score) are retained and extended. Unlikely
hypotheses are pruned from the search space.

At the start of a speech utterance, only valid start phones as
specified in the phone network are marked as active. At each time
frame,t, dynamic programming using the Viterbi algorithm is per-
formed only over the active portion of the phone network. The
active portion of the phone network varies with time since we em-
ploy a beam search strategy. All newly extended phones get added
to the active portion of the network and pruned phones get deleted.
The wave decoder [4] aims to restrict dynamic memory usage to
a minimum by allocating space for only the active portion of the
network instead of the entire network. It also reclaims space from
the portion of the network that becomes inactive.

To be able to retrieve the phone sequence that corresponds to
the winning cumulative likelihood score, we need to store the par-
tial phone sequences in a linked list fashion; one linked list per
viable phone sequence. This set of linked lists constitutes the de-
coding tree. Each entry in the decoding tree (termed DTENTRY)
is associated with a specific phone in some viable phone sequence.
Each DTENTRY contains information regarding the frame num-
ber when the phone was first activated and pointers to the preced-
ing and following DTENTRYs of the sequence. The decoding tree
is updated every frame to reflect any changes in the set of viable
phone sequencesthat lie within the beam. A link is maintained be-
tween the cumulative likelihood score for each active phone which
is part of some viable sequence of phones and the most recent
DTENTRY associated with that sequence. Using this information,
one can backtrack through the phone sequence that any surviving
path took from the start to the current time instant.

Typically, a VAD is used to determine when to start and stop
processing speech input. Once the end of speech marker is set by
the VAD, backtracking is performed to pick the winning string and
involves traversing the path in the decoding tree with the highest
cumulative score. In this paper, we propose to examine the con-
tents of the decoding tree periodically, instead of only once for
backtracking at the end, to determine if a valid barge-in has oc-
cured and also to perform early endpoint detection.

3. WORD COUNTING PROCEDURE

At the start of a word, the decoding tree is very fuzzy in the
sense that there are several viable phone sequence hypotheses.
Gradually, as we progress deeper into the word, fewer of the hy-
potheses survive due to the beam search strategy that we employ,
until the point where there are only a handful of viable hypothe-
ses that explain the spoken word. However, when the speech in-
put is out-of-vocabulary, the decoding tree continues to remain
fuzzy since none of the word models will match the input well. In
most instances, if the word is modeled well and the input speech
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Figure 1: A Sample decoding tree evolving over time

matches well with the model, we are left with only one DTENTRY
that represents that segment of time and it is part of every viable
path. This is illustrated in Figure 1 where at the start of the word,
there are many hyotheses active but by the beginning of the next
word there are very few DTENTRYs active for the segment of time
corresponding to the previous word.

We conclude from the above discussion that uncertainty
present at the start of a spoken word dissipates by the time we
reach the later words in the sequence. By periodically examining
the contents of the decoding tree, and tracing back through all vi-
able paths at the current time instant, one can determine how many
words have stabilized across all paths. Traversing through the de-
coding tree every frame does add roughly a 4% overhead in our
connected-digit recognition implementation and is an overkill. So
we chose to examine the decoding tree every10

th frame to look
for newly stabilized words and reduced this overhead to 0.4% in
the process. Two applications of word counting that are of partic-
ular interest are recognition-based barge-in and early endpointing.
In the case of barge-in, we want to interrupt the announcement as
soon as we know that the first word has been spoken. In contrast,
for the early endpointing decision, we would like to stop process-
ing as soon as the last spoken word has stabilized.

Figure 2 shows the algorithm in action on a sample 14-digit
utterance. First and last digit end times are marked by solid lines.
The two dashed lines next to the solid lines respectively represent
the time instants when barge-in and early end decisions were re-
ported. For this example, barge-in is reported about 180 ms after
the first digit ended and an early endpoint is reported about 480 ms
after the last digit ended. Notice that the barge-in did not falsely
trigger on the initial noise segment that occured before the first
digit was spoken but instead waited until after the first digit ended.
This demonstrates that the recognition-based barge-in is more ro-
bust compared to a VAD-based barge-in scheme that cannot dis-
tinguish between digits and other speech events.

3.1. Recognition-Based Barge-In

Recognition-based barge-in is the idea of using a recognizer to
determine when the first in-vocabulary word was spoken and sub-
sequently cutting off any announcement that the system may have
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Figure 2: A sample 14-digit utterance

been playing at that point in time. When user input is a cough
or breath or any other out-of-vocabulary speech event, there is a
good chance that the announcement will not be interrupted since
the speech segment is likely to match better with a filler model
compared to other models. This ability to continue playing the an-
nouncement when extraneous speech is encountered is a desirable
attribute and is the main advantage of this approach compared to
its VAD-based counterpart.

Filler and silence segments are considered contentless whereas
in-vocabulary words have word content associated with them. For
determining the barge-in decision point, we periodically examine
the decoding tree and insist that every viable path in the decoding
tree have a word with content associated with it. This also means
that at the barge-in decision point, there is is no longer any viable
path consisting solely of contentless words. So the moment that all
the paths in the decoding tree have at least a single word of content
(i.e, not solely filler or silence) associated with them, a barge-in
decision point is reached. Figure 1 shows that the barge-in decision
point is typically declared as soon as the contentless paths becomes
inactive which could, in some instances, be into the middle or end
of the second word.

3.2. Recognition-Based Early Endpoint Detection

For known-wordlength recognition applications, where the
number of expected words is pre-determined, it would be desir-
able to terminate the recognition process as soon as the expected
number of words have been detected. This attribute is desirable
both in terms of fast recognition response times and also in terms
of minimizing resource usage. Typically, connected digit applica-
tions such as account number or telephone number recognition are
known-wordlength tasks.

Similar to the recognition-based barge-in detection case, we
periodically examine the decoding tree contents and skip over the
segments that have no word content associated with them. This
time, however, we insist that the final word “stabilize” on all the
paths. Stability is satisfied by checking for the ending times of the
last word in each of the viable paths and insisting that the last word
with content end at the same frame number in each of the paths.
Synchronization of ending frame number across all viable paths is

a stiff requirement. Nevertheless, it is satisfied often enough and
early into the post-utterance silence portion. There are, however,
a fraction of speech utterances for which this stringent require-
ment is not satisfied. For such cases, a VAD endpoint is used to
terminate the recognition process. Therefore we propose using the
recognition-based early decision algorithm in parallel with a VAD.

The endpoint decision marker can be set by either the early
endpointing method that we have outlined above or after the gap
timer has expired in the VAD, whichever is first. This ensures that
the worst-case response time of the parallel system is no worse
than that obtained by the VAD-only endpointing scheme. In gen-
eral, as will be evident in the next section, the average response
times are much improved.

4. EXPERIMENTAL RESULTS

The task that was chosen to measure the effectiveness of the
algorithms outlined in this paper is a connected digit application.
The testing database consists of 15000 connected digit strings col-
lected over a variety of telephone connections. The evaluation was
done using known-wordlength grammars with a different grammar
being chosen depending on the length of the string. Digit lengths
varied from 1 to 16 with the average digit length being 6. Two
filler models, one modeling all types of non-keyword speech and
sounds and one modeling breath were used in conjunction with
silence and 275 context-dependent head-body-tail models for the
digits 1 through 9, Z (zero) and O (oh). More information on this
model topology can be found in [6].

Figure 3 shows a histogram of the time difference between
when the barge-in decision was made and when the first word of
the winning path actually ended. The word ending time of the
first word for this purpose is determined at the end of the utter-
ance by tracing back through the path that had the best cumulative
score. As is evident from Figure 3, the average delay in reporting
barge-in is about 130 ms from the end of the first digit and typ-
ically occurs into the second digit of a connected digit utterance.
There are some cases where a decision is made even before the first
word has ended and are represented in the lower left corner of the
histogram. There are roughly 1.5% of utterances not represented
in this histogram for which barge-in decision could not be made
since some contentless path remained viable for the duration of
the utterance. This is a trade-off that has to be made if one desires
to selectively barge-in based on the recognition decision.

To evaluate out-of vocabulary performance, a database of 6600
utterances consisting of short non-digit phrases spoken by a va-
riety of speakers was selected and an unknown length grammar
was used. When the recognizer was presented with short non-digit
(out of vocabulary) phrases, it did not report barge-in on roughly
82% of the sentencesand wrongly triggered on the remaining 18%.
This is still substantially better than a VAD-based scheme which
would have wrongly triggered on 100% of the non-digit phrases.
One can augment the recognition-based barge-in decision module
that relies on filler models to filter out non-digit utterances, with an
utterance verification module [7], which will further lower the rate
of incorrect barge-in when out-of-vocabulary speech is encoun-
tered.

Figure 4 shows a histogram of the time difference between
when the early-endpointing decision was made and when the last
word actually ended. The actual ending time of the last word is
again determined by the backtracking that is done at the end on
the winning path. We can see that the average delay in reporting



-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
20

00
30

00
40

00
50

00

(First Word End Time - Barge-In Report Time) in seconds

S
en

te
nc

e 
C

ou
nt

Figure 3: Histogram of time elapsed before barge-in is reported

the end in relation to when the last word actually ended is about
375 ms. This represents a 75% improvement in average response
time when compared to a gap-time of 1500 ms that has to expire
before any decision can be made in the VAD-only case. For con-
nected digit tasks, typical gap-time values are between 1000-1500
ms. One caveat is that for about 2.5% of the utterances an early
endpointing decision could not be made since the word end did
not stabilize prior to the gap-timer expiring. For these utterances
we have to rely on the VAD to detect the end of the utterance so
backtracking can be performed to determine the winning sentence.
In the rest of the cases, backtracking was performed as soon as the
early endpointing decision was made. Since the early endpointing
decision is based on a sufficiently stringent criterion, no new er-
rors are introduced by abandoning the search early. Therefore, the
recognitionaccuracy remains the same whether we used a VAD-
only scheme or a VAD in parallel with the recognition-based early
end decision scheme.

Only 8% of the correctly recognized sentences had response
times of greater than 0.75 seconds whereas 34% of the incorrectly
recognized sentences had response times of over 0.75 seconds.
So a higher proportion of errors have longer response times com-
pared to correctly recognized strings. This fact can possibly be ex-
ploited to aid in distinguishing between correct recognitions and
misrecognitions and is a topic for future work..

We notice from Figure 4 that the decision to terminate is al-
ways after the last digit has ended, unlike in Figure 3 where a
barge-in decision was made in some cases prior to the first word
ending. This shows that the early endpointing decision criterion
that we have chosen is more conservative when compared to our
barge-in criterion. Making the termination criterion weaker may
result in quicker response times but will also in general lower ac-
curacy by terminating too soon, earlier than the end of the last
word in some instances.

5. CONCLUSIONS

We have presented a method to perform barge-in and early
endpoint detection using information already available in the rec-
ognizer. Recognition-based barge-in is more robust to extrane-
ous sounds compared to VAD-based barge-in. The recognition-
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Figure 4: Histogram of time elapsed before endpoint is reported

based early end decision scheme that we also presented has prac-
tical significance in that it speeds up recognition response times
and uses fewer computational resources in the process. Experi-
mental results on connected digits demonstrate the effectiveness
of these schemes compared to using only a VAD for purposes of
barge-in and endpoint detection. The barge-in criterion can be fur-
ther strengthened by adding an utterance verification component
to this system and is an ongoing topic of interest in our research.
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