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ABSTRACT 2. SEMANTIC PARSING

This research investigates using semantic information to lea®emantic parsing involves using semantics directly in parsing
syntax rules automatically. After describing a semantic parsingnd understanding input utterances. There has been some work
mechanism for parsing utterances based on meaning, we illudene in this field, mostly involving using hidden Markov models
trate a grammar induction technique which uses semantic par$MMs) [6] and artificial neural networks (ANNSs) [4, 3], as well
ing’s results to create syntactic rules. We also present and discusssimply using semantics tomplementather than replace syn-
several experiments which use the learned grammar in syntactax [1]. However, none of the techniques we researched seem to
parsing experiments in two domains. Overall, the learned granprovide information which would be useful for driving grammar
mar covers 98% of semantically-valid utterances in its originainduction techniques, so we developed our own.

domain and 85% in a different domain.

1. INTRODUCTION

2.1. Mechanism

Our semantic parser is based on a bottom-up chart parsing sys-
One approach to spoken language understanding converts a treem. The original system utilizes a grammar, semantic functions,
scribed utterance into a semantic meaning representation, whiahd semantic constraints. Using the grammar, the system com-
is then interpreted to produce a response. This can be accoputes a syntactic parse tree for an utterance. It then generates the
plished with conventional parsing technology given a syntactiatterance’s semantic frame representation, consisting of a head,
grammar and semantic composition rules. However, construatenoting the main concept, and possibly a set of key-value pair
ing such a grammar, even within a given domain, is a difficulmodifiers which further describe this concept. The system gener-
and time-consuming task. An alternative approach is to learates this representation for an utterance by looking up or combin-
the translation rules (grammar and construction functions) frorimg the semantics of each syntactic node’s constituents, working
a corpus of translated examples. This eliminates the need fap to the root node.

knowledge engineering but requires the collection and annotation
of the corpus, which can be as difficult and expensive. Semantic functions dictate how semantics combine; each takes

its arguments in a specified order (i.¢.(0 1) specifies that the
This paper describes work toward automatically learning syntadirst constituent represents the first argumefitftl 0) specifies
tic grammar rules from an un-annotated corpus, using a minthat the second constituent is the first argument) and combines
mal amount of knowledge engineering. Inspired by the obsethem into output semantics. A set of semantic constraints, de-
vation that people can understand agrammatical constructs (asctibing which words can take which predicates and arguments,
perhaps acquire grammatical knowledge) based on semantic aregtrict the semantic functions to combining only those words and
real-world constraints on what “makes sense,” our approach uspirases which “make sense” to combine.
a “semantic parser” to seed the grammar induction process. After
describing the exact mechanism we use for semantic parsing, V&mantic parsing builds on this concept further. This technique
illustrate a grammar induction technique which makes use of thean be summarized as parsing utterances based on meaning, only
output of semantic parsing to generate the desired grammaticg@mbining words and phrases which are “meaningful” to com-
rules. We present several experiments making use of the learnBte. Instead of relying on a grammar to dictate which seman-
grammar, measuring how well this grammar covers utterancéi functions should be applied, semantic parsing eliminates the
from the domain in which it was learned as well as a differengrammar altogether and tries to uak functions, resulting in
domain, assessing the portability of this grammar. We conclud&hatever combinations are allowed by the semantic constraints.

with a discussion of the results of these experiments as well as . . . .
ideas for future work. Thus, our semantic parsing system works by using semantic-

based edges, instead of syntax-based ones. The parser uses the
semantics of input words (defined in a lexicon) as the semantics

*you may reach this author at: Nuance Communications, 1380 WiIIovS)f its edge. Instead _Of attempting to comblne edges based on
Road, Menlo Park, CA 94025, USA syntax, the system tries to apply the semantics of two edges as




arguments to each semantic function. This results in the creation|| Uterance: cheapest flight from boston to philadelpijia

of edges for whatever combinations are permitted (what “makes|| meaning representation: {flight
sense”) by the constraints. Although semantic parsing still re- sfrom { city :name “boston}

. Lo . . . . . :to { city :name “philadelphia}
quires writing these constraints, this task involves identifying ba- ‘pred{ cheap :type “superlativ”
sic semantic concepts and the various predicates and arguments
that concept may involve, and therefore tends to be more simple

L . . . . parts of speech: B @O1):
than writing syntax rules. Effectively, semantic parsing requires [£2 (0 1):
defining and understandinghat concepts can combine but not [fo (10): AdjN]

the syntax-level details dfowthey actually combine. [f1 (0 1): P Name]

]
[f1 (01): P Name]
|

{from {eity sname "hoston”y Figure 2: Semantic parse dfcheapest flight from boston to
philadelphia” The parser records the utterance, the computed
meaning representation, and the parts of speech of words that
combine as well as the function that allows for their combina-

f(O 1) f(10) !
tion.
{from :topic {city :name "boston"}} NULL R )
S Binaton, using f1, subsequently combines those two fragments together

with f2, and so forth.

Figure 1: Semantic parsing ignores word order when combining2 .

two words or phrases. The system attempts to compy@el) as .3. Domains and Coverage

well as (1 0) for all ssmantic functiong, relying on the seman- For our semantic parsing and grammar induction development

tic constraints to restrict output to only meaningful combinations. . . . !
and our associated syntactic parsing experiments, we used data
from two domains. Most of the testing and development utilized

Semantic parsing attempts to avoid syntactic influence as much@g ATIS domain [5]; our subsequent portability experiment uti-

possible. For example, semantic parsing should ignore the ordgied the Jupiter domain [8]. We split data from the ATIS Il and

in which words appear in an utterance. For efficiency, our sysi| collections into a 3764 utterance training set (ATIS TRAIN)

tem approximates word order independence by maintaining agnd a 1033 test set (ATIS TEST); we chose 1000 utterances from
jacency constraints. It ignores the order in which adjacent wordsypiter (Jupiter TEST) randomly.

and phrases appear, only trying to combine those edges two dif-

ferent ways: one with the semantics of the first edge as the firg¥e also defined lexicons and constraints for each of these do-

argument to a semantic function, and one with the semantics ofains. Our goal was not to define these components completely

the second edge as the first argument, as shown in Figure 1. but to define a sufficient lexicon and constraints to allow us to run
several meaningful experiments. For ATIS, our lexicon and con-

Also for efficiency, the system uses inheritance to simplify writstraints contained 600 and 175 entries, respectively; for Jupiter,

ing these constraints. By declaring certain semantic concepts fifose components contained 829 and 126 entries, respectively.
be “children” of other concepts, any valid arguments of the an-

cestors of a word can be considered valid arguments of the woktle ran our semantic parser through each of these sets to assess
itself. We also define sentence-level functions which examine thie coverage (percentage of complete parses, or parses consisting
semantics of an utterance and ignore pre-defined filler words (i.&f only a single, unfragmented piece) of our constraints; again,
“please”), possibly combine non-filler fragments, and determinave were not seeking to achieve complete coverage but rather

if the utterance refers to a query, statement, or command. wanted to obtain these numbers for evaluating subsequent pars-
ing experiments. We achieved 42% coverage of the ATIS sets and

2.2. Example 64% coverage of the Jupiter set.

As this system processes input utterances, it records the com- 3. GRAMMAR INDUCTION

puted meaning representation for these utterances. It also records

the parts of speech (also defined in the lexicon) of the words th&rammar induction is a well researched field in which many dif-
combine in semantic parsing, as well as the semantic functiderent approaches have been investigated [2]. Several basic tech-
that allows for their combination. This information is useful inniques approach the problem by extracting an overly simplistic
later processing by grammar induction mechanisms. grammar and clustering syntactic units for generalization [2, 7].

Therefore, if the system is presented with the utterdnheap-  Accordingly, we originally investigated a clustering-based gram-
est flight from boston to philadelphialand provided the appro- mar induction approach. This approach extracted a new rule for
priate lexicon and constraints), it logs the information shown irevery unique bracketing seen in the semantic parse logs and iter-
Figure 2. The system first combinésheapest” with “flight” atively clustered these rules. After analyzing this approach, we
(“cheapest” is a valid argument offlight” describing its cost) decided that it did not make enough use of the semantic-level in-
by some semantic functiofy, combinesfrom” with “boston”  formation available and decided to develop an approach that did;



we called the resulting technique semantic-head driven inductioFRAIN set and use SHDI to induce the corresponding grammar.

(SHDI), as described below. Figure 4 provides an interesting view of the learning process,
plotting the number of utterances against the number of rules
3.1. Semantic-Head Driven Induction learned. As desired, one can clearly see that as the system parses

more utterances, it encounters fewer previously unseen forma-
In our implementation of semantic functions, the first argument téions and does not need to create as many new rules.
a function constitutes the head, or major concept, of the resulting

semantic frame. This recognizes how semantic-level phrases afie Left-hand Side Right-hand Side _ Sem. Function _ Coynt
constructed; we can use these phrases to influence the learning me‘g — H,‘\)‘ PO ;2 E‘i ég i‘s‘go
. . - - 3
syntactic structure. By using the part of speech of the first argu{| n_o ., NumbetON %o (10) 12
ment to a semantic function to create syntactic phrases, SHDI cap P-0 — NameP f1(10) 111
generate clean, readable rules directly from the semantic pargg P.0 — PName 7101 4241
! . 0 PR NumberO —  Number Number f5 (0 1) 137
logs. These rules are often compact and recursive, eliminating Numbet0 —  Number Number f5 (1 0) 132
the need for clustering; essentially, the grammar is pre-merged. || SENT-0 — AuxProV.0 fo (2) 23
SENT.0 —  Please \0 fo (1) 98
SENT.0 —  WhObjCopNO  f7 (02) 223
[f2 (01
[fz2(01):
[fo (1 0): AdjN] . . . . .
[f1 (0 1): P Name] Figure 5: Examples of rules learned in semantic-head driven in-
] ion
[f1 (0 1): P Name] duction.

I Using SHDI, the system extracts 401 grammar rules; Figure 5

Sema"tiC'Heaﬁ Driven Induction lists some examples of these rules. Qualitatively, many of the
CefeFand Side Right-hand Side Sem. Funcih rules learned under SHDI are quite reasonable, sudi_@s—
N0 — AdN 7o @0 N_0 P_.0, orN_O0 — N N. The system even extracts sentence-level
P.0 —  PName f1(01) syntactic rules which handle sentences sucitas you show me
N-0 — NORO £2(01) flights ..”, “please show me flights .,’and“what are flights ...".

Some rules are more puzzling, suchPa8 — Name Pin addition

Mo the expecte®_0 — P Name However, SHDI records not only
ttlf&e rules that it learns but also counts of how many times each rule
occurs in the training data. One can see that the expé&cidaime
combination clearly dominates tiName Pcombination. A sta-
- . . . . tistical parser could assign that rule a lower probability or ignore
The example in Flgure 3 |Ilystrates this me(_:hanlsm, using _thl?and rgcover from the e?(istence of this otheFr)wise cor?:‘usingg pair
parse log from Figure 2 as input. SHDI begins by recognizing¢ - 1ao

the noun“flight” as the first argument tfy, and extracts a syn-

tactic ruleN_O for theAdj N combination. It then recognizes the some constructs do give the semantically-based induction system

prepositiorffrom” as the head in the combination‘@om” and  |ess avoidable problems. Specifically, it is difficult to distinguish

“boston” and creates th_0 rule and phrase type for this com- n,ympers based solely on semantics, while ignoring word order.

bination. Finally, this technique observes thetteapest flight”  gecause the components of the numtfity two” are consid-

is the first argument tg, and therefore creates another instancgred in both orders (fifty two, two fifty), the system cannot as-

of theN_0 (the derived part of speech ftcheapest flight’) rule  certain which number is meant; extracting useful syntactic rules

corresponding to thBl_0 P_0 combination. for numbers is difficult without the use of syntactic cues or pre-
labeled examples.

Figure 3: Rules learned in semantic-head driven induction fro
“cheapest flight from boston to philadelphiaSHDI uses the part
of speech of the first argument to each function to create syntac
phrases.

3.2. Results of Induction
comanic sad e eson: . s 4., EXPERIMENTS

After learning a grammar using the SHDI approach, we assess its
usefulness through a series of syntactic parsing experiments using
the learned grammar. These experiments involve using the gram-
mar both in the original domain in which it was learned (ATIS)
as well as a new domain (Jupiter).

# Rules Extracted

To run these experiments, we addressed a concern involving the
speed of the parsing system. Using an all-parses bottom-up chart
O SO 1000 150 200 2600 000 00 4000 parser, we found the system to be too slow to run our experiments
in a reasonable amount of time. Consequently, we enhanced the
Figure 4: Number of utterances vs. number of rules learned isystem by adding semantic filtering. Instead of performing all
semantic-head driven induction. semantic computation after completing a parse, we modified the
chart parser so it computed semantitging parsing, immedi-
For our research, we perform a semantic parse of the ATI&ely removing any semantically-invalid syntactic edges. This




prevented the system from keeping track of the edges whidbwing us to run syntactic parsing without semantic filtering.
could not contribute to a valid parse. Because of this filteringSecond, we would like to seed the system with syntactic rules
we evaluated our syntactic parsing experiments relative to the ser semantically-unconstrained but syntactically-straightforward
mantic parsing coverage; alternatively, we restricted our experconcepts, like number combinations. Third, we would like to
ments to semantically-valid utterances (ones which were cover@dprove the way sentence-level rules are learned, perhaps train-
by the defined semantics and constraints). ing the system over several domains to learn a more robust and
portable set of rules. Finally, we want to investigate mirroring the
The first experiment assessed the learned grammar's performanggults of this research toward learning semantic constraints auto-
in the original domain. After inducing a grammar from the sematically. This research begins with constraints and uses them to
mantic parse of ATIS TRAIN, we tried this grammar on two setgearn syntax, trying the learned rules in a new domain. We would
of utterances from ATIS. As an initial check, we simply ran ajike to see if one can similarly use these syntax rules in a new do-
syntactic parsing experiment in ATIS TRAIN to ensure we goimain to deduce the correlation between different words and learn
full coverage. Next, we used this grammar on a new set of Usemantic constraints for that domain automatically. This could
terances (ATIS TEST), achieving promising results. The inducegffectively allow a system to port itself to new domains.
grammar covered 98% of the utterances that were covered se-

mantically (or 41% overall). 6. ACKNOWLEDGMENTS
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