THE IBM TRAINABLE SPEECH SYNTHESIS SYSTEM

R.E. Donovan & E.M. Eide

IBM T.J. Watson Research Center
PO Box 218, Yorktown Heights, NY, 10598, USA

red@watson.ibm.com

ABSTRACT

The speech synthesis system described in this
paper uses a set of speaker-dependent decision-tree
state-clustered hidden Markov models to automatically
generate a leaf level segmentation of a large single-speaker
continuous-read-speech database. During synthesis, the
phone sequence to be synthesised is converted to an
acoustic leaf sequence by descending the HMM decision
trees. Duration, energy and pitch values are predicted
using separate trainable models. To determine the seg-
ment sequence to concatenate, a dynamic programming
(d.p.) search is performed over all the waveform segments
aligned to each leaf in training. The d.p. attempts to
ensure that the selected segments join each other spec-
trally, and have durations, energies and pitches such that
the amount of degradation introduced by the subsequent
use of TD-PSOLA is minimised. Algorithms embedded
within the d.p. can alter the required acoustic leaf se-
quence, duration and energy values to ensure high quality
synthetic speech. The selected segments are concatenated
and modified to have the required prosodic values using
the TD-PSOLA algorithm. The d.p. results in the system
effectively selecting variable length units, based upon its
leaf level framework.

1. INTRODUCTION

Through the late 1980s and early 1990s the speech seg-
ments most frequently used in concatenative speech syn-
thesis systems (in European languages) were diphones,
and subsequently diphones augmented with longer poly-
phone units. In the last few years research has increasingly
focused on the automatic selection and segmentation of
speech units for use in concatenative speech synthesis sys-
tems using trainable statistical models, [2], [5], [6], [7]. The
attraction of this approach over the more traditional man-
ual selection and segmentation approaches are that train-
able approaches offer the possibility of selecting a set of
units which is optimal in some useful sense through train-
ing on much larger amounts of speech data than can sen-
sibly be analysed by hand, which should lead to superior
synthetic speech. In addition, the full automation of the
selection and segmentation process, and the use of simple
continuous speech databases rather than isolated nonsense
words, makes the process of generating new voices, and po-
tentially new languages, much easier and much faster.

The system described in this paper is an extension of the
work described in [3], [4]. The principal new features are
the use of a dynamic programming search over all available
segments during synthesis, the use of additional sets of

eide@watson.ibm.com

decision trees to predict duration and energy parameters,
and the inclusion of a pitch prediction algorithm. The rest
of this paper is structured as follows. Section 2 describes
the methods used to construct a synthesis system in a given
voice, Section 3 describes the runtime synthesis process,
and Section 4 describes the dynamic programming search
in detail. Results are presented in Section 5, and likely
future work briefly discussed in Section 6.

2. SYSTEM CONSTRUCTION

The system construction details are essentially the same
as those in [4], and therefore only important differences
will be mentioned here. The current system is trained on
45 minutes of speech and clustered to give approximately
2000 acoustic leaves. The variable rate Mel frequency cep-
stral coding used in [4] is replaced with a pitch synchro-
nous coding using 25ms frames through regions of voiced
speech, with 6ms frames at a uniform 3ms or 6ms frame
rate through regions of unvoiced speech. Plosives are rep-
resented by 2-state models, but the burst is not optional
as it was in [4]. Lexical stress clustering is not currently
used, and certain segmentation cleanups described in [4]
are not implemented. The tree building process uses the
algorithms described in [1], which are essentially the same
as those used in [4], but which will be described here to
aid understanding of Section 4.3.

A binary decision tree is constructed for each feneme!
as follows. All the data aligned to a feneme is used to
construct a single Gaussian in the root node of the tree.
A list of questions about the phonetic context of the data
is used to suggest splits of the data into two child nodes.
The question which results in the maximum gain in the log-
likelihood of the data fitting Gaussians constructed in the
child nodes compared to the Gaussian in the parent node
is selected to split the parent node. This process continues
at each node of the tree until one of two stopping criteria
is met. These are when a minimum gain in log-likelihood
cannot be obtained or when a minimum number of seg-
ments in both child nodes cannot be obtained, where a
segment 1s all contiguous frames in the training database
with the same feneme label. The second stopping criteria
differs from that used in [1], in which a minimum num-
ber of frames is enforced, because a minimum number of
segments 1s required for subsequent segment selection al-
gorithms. Also, node merging is not permitted in order to
maintain the one parent structure necessary for the Back-
ing Off algorithm described in Section 4.3.

LA feneme is a term used to describe an individual HMM
model position. eg. the modelfor /AA/ comprises three fenemes

AA_1,AA 2, and AA 3.



The acoustic (HMM) decision trees are built asking
questions about only immediate phonetic context. While
asking questions about more distant contexts may give
slightly more accurate acoustic models it can result in
being in a leaf in synthesis from which no segments are
available which concatenate smoothly with neighbouring
segments, for reasons similar to those described in Sec-
tion 4.3. Separate sets of decision trees are built to cluster
duration and energy data. Since the above concern does
not apply to these trees they are currently built using 5
phones of phonetic context information in each direction,
though to date the effectiveness of this increased context,
or indeed the precise values of the stopping criteria have
not been investigated.

3. RUNTIME SYNTHESIS

Parameter Prediction. During synthesis the words
to be synthesised are converted to a phone sequence by
dictionary lookup, with the selection between alternatives
for words with multiple pronunciations being performed
manually. The decision trees are used to convert the phone
sequence into an acoustic, duration, and energy leaf for
each feneme in the sequence. The median training values
in the duration and energy leaves are used as the predicted
duration and energy values for each feneme. The acoustic
leaf sequence, duration and energy values just described
are termed the requested parameters from hereon. Pitch
tracks are also predicted using a separate trainable model
not described in this paper.

Dynamic Programming. The next stage of synthesis
is to perform a dynamic programming (d.p.) search over
all the waveform segments aligned to each acoustic leaf in
training, to determine the segment sequence to use in syn-
thesis. The d.p. algorithm, and related algorithms which
can modify the requested acoustic leaf identities, energies
and durations, are described in detail in Section 4.

Energy Discontinuity Smoothing. Once the seg-
ment sequence has been determined, energy discontinu-
ity smoothing is applied. This is necessary because the
decision tree energy prediction method predicts each fen-
eme’s energy independently, and does not ensure any de-
gree of energy continuity between successive fenemes. Note
that it is energy discontinuity smoothing (the discontinu-
ity between two segments is defined as the difference be-
tween the energy (per sample) of the second segment mi-
nus the energy (per sample) of the segment in the training
data following the first segment), not energy smoothing;
changes in energy of several orders of magnitude do oc-
cur between successive fenemes in real human speech, and
these changes must not be smoothed away.

TD-PSOLA. Finally, the selected segment sequence is
concatenated and modified to match the required dura-
tion, energy and pitch values using an implementation of
the TD-PSOLA algorithm, [8]. The implementation is es-
sentially the same as that described in [4], except that the
Hanning windows used are set to the smaller of twice the
synthesis pitch period or twice the original pitch period.

4. DYNAMIC PROGRAMMING

The dynamic programming (d.p.) search attempts to
select the optimal set of segments from those available in
the acoustic decision tree leaves to synthesise the requested

acoustic leaf sequence with the requested duration, energy
and pitch values. The optimal set of segments is that which
most accurately produces the required sentence after TD-
PSOLA has been applied to modify the segments to have
the requested characteristics. The cost function used in the
d.p. algorithm, described in Section 4.1, therefore reflects
the ability of TD-PSOLA to perform modifications with-
out introducing perceptual degradation. Two additional
algorithms, described in Sections 4.2 and 4.3, enable the
d.p. to modify the requested parameters where necessary
to ensure high quality synthetic speech.

4.1. The Cost Function

Continuity Cost. The strongest cost in the d.p. cost
function is the spectral continuity cost applied between
successive segments. This cost is calculated for the bound-
ary between two segments A and B by comparing a spec-
tral vector calculated from the start of segment B to a
spectral vector calculated from the start of the segment
following segment A in the training database. The conti-
nuity cost between two segments which were adjacent in
the training data is therefore zero. The vectors used are 24
dimensional Mel binned log FFT vectors. The cost is com-
puted by comparing the loudest regions of the two vectors
after scaling them to have the same energy; energy con-
tinuity is costed separately. This method has been found
to work better than using a simple Euclidean distance be-
tween cepstral vectors.

The effect of the strong spectral continuity cost together
with the feature that segments which were adjacent in the
training database have a continuity cost of zero is to en-
courage the d.p. algorithm to select sequences of segments
which were originally adjacent wherever possible. The re-
sult is that the system ends up effectively selecting and
concatenating variable length units, based upon its leaf
level framework.

Duration Cost. The TD-PSOLA algorithm intro-
duces essentially no artifacts when reducing durations, and
therefore duration reduction is not costed. Duration in-
creases using the TD-PSOLA algorithm however can cause
serious artifacts in the synthetic speech due to the over
repetition of voiced pitch pulses, or the introduction of ar-
tificial periodicity into regions of unvoiced speech. The du-
ration stretching costs are therefore based on the expected
number of repetitions of the Hanning windows used in the

TD-PSOLA algorithm.

Pitch Cost. There are two aspects to pitch modifica-
tion degradation using TD-PSOLA. The first is related to
the number of times individual pitch pulses are repeated
in the synthetic speech, and this is costed by the dura-
tion costs just described. The other cost is due to the
fact that pitch periods cannot really be considered as iso-
lated events, as assumed by the TD-PSOLA algorithm;
each pulse inevitably carries information about the pitch
environment in which it was produced, which may be inap-
propriate for the synthesis environment. The degradation
introduced into the synthetic speech is more severe the
larger the attempted pitch modification factor, and so this
aspect is costed using curves which apply increasing costs
to larger modifications.

Energy Cost. Energy modification using TD-PSOLA

involves simply scaling the waveform. Scaling down is free



under the cost function since it does not introduce serious
artifacts. Scaling up, particularly scaling quiet sounds to
have high energies, can introduce artifacts however, and it
is therefore costed accordingly.

4.2. Cost Capping/Post Selection

Modification

During synthesis, simply using the costs described above
results in the selection of good segment sequences most
of the time. However, for some segments in which one or
more costs becomes very large the procedure breaks down.
To illustrate the problem, imagine a feneme for which the
predicted duration was 12 Hanning windows long, and yet
every segment available was only 1-3 Hanning windows
long. This would result in poor synthetic speech for two
reasons. Firstly, whichever segment is chosen the synthetic
speech will contain a duration artifact. Secondly, given
the cost curves being used, the duration costs will be so
much cheaper for the 3-Hanning-window segment(s) than
the 1 or 2 Hanning-window segment(s), that a 3-Hanning-
window segment will probably be chosen almost irrespec-
tive of how well it scores on every other cost measure. It
was to cope with cases like this that the cost capping/post
selection modification scheme was introduced.

Under the cost capping scheme, every cost except conti-
nuity is capped during the d.p. at the value which cor-
responds to the approximate limit of acceptable signal
processing modification. After the segments have been
selected, the post-selection modification stage involves
changing (generally reducing) the requested characteris-
tics to the values corresponding to the capping cost. In the
above example, if the limit of acceptable duration modi-
fication was to repeat every Hanning window twice, then
if a 2-Hanning-window segment were selected it would be
costed for duration doubling, and ultimately produced for
4 Hanning windows in the synthetic speech. Thus the re-
quested characteristics can be modified in the light of the
segments available to ensure good quality synthetic speech.
The mechanism is typically invoked only a few times per
sentence.

4.3. Backing Off

The decision trees used in the system enable the rapid
identification of a sub-set of the segments available for syn-
thesis with hopefully the most appropriate phonetic con-
texts. However, in practice the decision trees do occasion-
ally make mistakes, leading to the identification of inap-
propriate segments in some contexts. To understand why,
consider the following example.

Imagine that the tree fragment shown in Figure 1 exists,
in which the question “R to the right?” was determined to
give the biggest gain in log-likelihood. Now imagine that
in synthesis the context /D-AA+!R/ is to be synthesised.
The tree fragment in Figure 1 will place this context in
the /!D-AA+!R/ node, in which there is unfortunately no
/D-AA/ speech available. Now, if the /D/ has a much
bigger influence on the /AA/ speech than the presence or
absence of the following /R/ then this is a problem. It
would be preferable to descend to the other node where
/D-AA/ speech is available, which would be more appro-
priate despite it’s /+R/ context. In short, it is possible
to descend to leaves which do not contain the most appro-
priate speech for the context specified. The most audible

D-AA+R

'D-AA+IR ID-AA+R

Question : R totheright ?
D-AA+R

ID-AA+IR ID-AA+R

Figure 1: A parent node and two leaves from a hypothet-
ical /AA/ tree. Shading indicates the fraction of the data
at each node with the context shown, in which ! indicates
logical NOT, and - and + are used to separate the preced-
ing and following contexts respectively from the central
phone.

result of this type of problem is formant discontinuities in
the synthetic speech, since the speech available from the
inappropriate leaf is unlikely to concatenate smoothly with
its neighbours.

The solution to this problem adopted in the current sys-
tem has been termed Backing Off. When backing off is
enabled the continuity costs computed between all the seg-
ments in the current leaf and all the segments in the next
leaf during the d.p. forward pass are compared to some
threshold. If it i1s determined that there are no segments
in the current leaf which concatenate smoothly (i.e. cost
below the threshold) with any segments in the next leaf,
then both leaves are backed off up their respective decision
trees to their parent nodes. The continuity computations
are then repeated using the set of segments at each parent
node formed by pooling all the segments in all the leaves
descended from that parent. This process is repeated un-
til either some segment pair costs less than the threshold,
or the root node in both trees is reached. By determin-
ing the leaf sequence implied by the selected segment se-
quence, and comparing this to the original leaf sequence,
it has been determined that in most cases backing off does
change the leaf sequence (it is possible that after the back-
ing off process the selected segments still come from the
original leaves). The process has been seen (in spectro-
grams), and heard, to remove formant discontinuities from
the synthetic speech, and is typically invoked only a few
times per sentence.

If there are no segments with a concatenation cost lower
than the threshold then there will be a continuity problem,
which hopefully backing off will solve. However, it may
be the case that even when there are one or more pairs
of concatenable segments available these cannot be used
because they do not join to the rest of the sequence. Ideally
then, the system would operate with multiple passes of
the entire dynamic programming process, backing off to
optimise sequence continuity rather than pair continuity.
However, this approach is probably too computationally
intensive for a practical system.

Finally, note that the backing off mechanism could also
be used to correct the leaf sequences used in decision tree
based speech recognition systems.



[® sailor_p NIST Fspec

Time: 1.?812| Ffeq:‘ ) D.DQ ‘Ualqe: 58

D: 0.84%44  L:

.51|250 R:I 1.361594 (F: 1.18)

8000

6000

qo00f | 1

2000

e

g |11 o!
o

0,55 N .E5
[ sailor_p
ST
5€ 56
5€
Figure 2: A wideband spectrogram of the synthetic sentence fragment “When a sailor in a...”. Leaf boundaries (vertical

lines), and segment boundaries (seg labels) are shown.

5. RESULTS

Figure 2 shows a wideband spectrogram of the synthetic
sentence fragment “When a sailor in a...”, taken from the
sentence “When a sailor in a small craft faces the might of
the vast Atlantic Ocean today, he takes the same risks as
generations took before him.”. The underlying leaf bound-
ary locations are shown with vertical lines, and the bound-
aries of the segments actually concatenated to construct
the speech indicated by the “seg” labels. This sentence
should be available on the conference CD-ROM.

The sentence in Figure 2 has an average segment length
of approximately 2.4 leaves. This is a typical figure for
a sentence from a different text to the training data con-
taining many unseen words. Of the words in this sen-
tence “sailor”, “faces”, “might”, “vast”, “same”, “risks”,
“generations” and “took” are not present in the training
data, with “craft” and “him” only being present as parts
of larger words. For sentences with vocabularies more sim-
ilar to the training vocabulary the average segment length
can rise to 3.0 leaves or much higher.

The synthetic speech produced by the current system
has considerably better formant continuity than that pro-
duced by the system described in [4]. In other respects,
such as segmental intelligibility and duration and energy
prediction, the current system is perhaps inferior, though
this is thought to be principally due to algorithms im-
plemented in [4] not yet implemented in the current sys-
tem. The current system’s runtime image is approximately
150MB, and it runs about an order of magnitude slower

than real time on a 133MHz Power PC.

6. FUTURE WORK

In addition to quality improvements in all areas, future
work will be concerned with the reduction of the system’s
runtime image size, both through pre-selecting some opti-
mal sub-set of the segments in each leaf to ship with the
synthesiser, and through compressing this sub-set. This
pre-selection will also greatly increase the runtime speed
of the system.

7. ACKNOWLEDGMENTS

Thanks to Lalit Bahl and Jeff Kusnitz for recording

speech databases.

8. REFERENCES

1. Bahl, L.R., deSouza, P.V., Gopalakrishnan, P.S.,
and Picheny, M.A. (1993) Context Dependent Vec-

tor Quantization for Continuous Speech Recognition,

Proc. ICASSP’93, Minneapolis, Vol. 2. pp. 632-635.

2. Black, A.W., and Campbell, N. (1995) Optimising
Selection of Units from Speech Databases for Con-
catenative Synthesis, Proc. Eurospeech’95, Madrid,
pp. b81-584.

3. Donovan, R.E. and Woodland, P.C. (1995) Improve-
ments In An HMM-Based Speech Synthesiser, Proc.
Eurospeech’95, Madrid, pp. 573-576.

4. Donovan, R.E. (1996) Trainable Speech Synthesis,
PhD. Thesis, Cambridge University Engineering
Department.?

5. Hauptmann A.G. (1993) SpeakEZ: A First Experi-
ment In Concatenation Synthesis From A Large Cor-
pus, Proc. Eurospeech’983, Berlin, pp. 1701-1704.

6. Huang, X., Acero, A., Adcock, J., Hon, H-W., Gold-
smith, J., Liu, J., and Plumpe, M. (1996) Whistler:
A Trainable Text-to-Speech System, Proc. ICSLP’96,
Philadelphia, pp. 2387-2390.

7. Itoh, K., Nakajima, S., and Hirokawa, T. (1994) A
New Waveform Speech Synthesis Approach Based on
the COC Speech Spectrum, Proc. ICASSP’94, Ade-
laide, Vol. 1, pp. 577-580.

8. Moulines, E., and Charpentier, F. (1990) Pitch-
Synchronous Waveform Processing Techniques for
Text-to-Speech Synthesis Using Diphones, Speech
Communication, 9, pp. 453-467.

2 Available by anonymous ftp to svr-ftp.eng.cam.ac.uk, or
via the World Wide Web at http://svr-www.eng.cam.ac.uk/Peo-
ple/Ex_Students/red/Personal.html



