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ABSTRACT

In this paper we show that accurate HMMs for con-
nected word recognition can be obtained without con-
text dependent modeling and discriminative training.
To account for di�erent speaking rates, we de�ne two
HMMs for each word that must be trained. The two
models have the same, standard, left to right topol-
ogy with the possibility of skipping one state, but each
model has a di�erent number of states, automatically
selected.
Our simple modeling and training technique has been
applied to connected digit recognition using the adult
speaker portion of the TI/NIST corpus. The obtained
results are comparable with the best ones reported in
the literature for models with a larger number of den-
sities.

1. INTRODUCTION

One of the main de�ciency of the classical HMMs is
related to inadequate modeling of the duration of the
acoustic events associated with each state. Several so-
lutions to this problem have been proposed. They rely
on state duration modeling by means of discrete or con-
tinuous distributions that are more adequate to �t the
temporal structure of speech. Another possibility is to
use the state duration as an additional information for
rescoring the hypotheses produced by Viterbi decod-
ing in a post-processing approach. All these solutions,
however, do not account for global spectral variations.
Thus, they are not able to avoid recognition errors de-
riving by an incorrect time warping. Many errors often
occur, indeed, because a sequence of observations is de-
coded by a few states - typically adsorbing low energy
frames - with high probability and duration. The other
states, instead, are rapidly traversed because their dis-
tributions do not �t well the remaining observations.
These errors, therefore, do not depend on the intrinsic
confusion of acoustically similar words, rather, the lack

of good duration modeling and an incorrect time warp-
ing produces word hypotheses that are loosely related
to the acoustics of the correct word.

In [5] we proposed an original approach to face these
problems. It does not directly rely on state/word du-
ration modeling, rather it models the global time vari-
ations of the spectral features of each word and their
correlation in time: two important perceptual cues that
are only partially exploited by standard HMMs. In
particular, we rescore the probability produced by a
conventional HMM system by means of the probability
of a second very simple recognizer using word \tempo-
ral" models. The HMM system takes care of the local
variations, while in the second system, the global time
spectral variations of a word are modeled by means of
two-dimensional cepstral features.
This post processing approach has given very good re-
sults for isolated word recognition [5]. Unfortunately, it
produced marginal improvements only when we tried
to rescore the N-best hypotheses produced by a con-
nected digit recognizer. The reason of this behavior is
that our approach heavily relies on correct alignments
because the temporal models are trained on forced seg-
mentations. In connected word recognition, instead,
many errors are just due to incorrect alignments.

Another important issue for the classical HMMs is the
so called trajectory folding phenomenon [4]. It hap-
pens because the characteristics of the speakers (their
sex and speaking rate, for example) and all the other
variabilities are merged into the models by using mix-
tures of densities associated to each state. This ca-
pability of merging highly variable information within
a state, increasing the number of components of state
mixtures, is one of the main reasons for the 
exibil-
ity and the success of HMM modeling. This merging,
however, has a cost in terms of discrimination capa-
bility: during recognition there is no mean to impose



Number of digits in sentence
Position 1 2 3 4 5 7

1 40 26 24 23 24 23
2 43 26 29 29 27
3 39 28 32 49
4 41 28 26
5 42 30
6 26
7 41

Table 1: Average duration in 10 ms frames of the ut-
terances of digit ONE in the TI male speaker training
set as a function of their position in the sentence

continuity constraints on the trajectory that a point in
the parameter space follows as the articulatory system
changes. Thus, an observation sequence can be recog-
nized with high probability using a sequence of states
and densities which have never been observed in the
training set, leading to misrecognitions.
To solve these problems it has been proposed to train
trajectory models [4] or trended HMM with state de-
pendent, time varying Gaussian means [1].

In this work, we face the duration and trajectory fold-
ing problems in connected word recognition, with whole
word models, by using a pragmatic approach that rec-
ognizes that some variability of the data is a priori
known and can be modeled separately. The most evi-
dent source of variability is, of course, the female/male
distinction, therefore, as usual in many systems, we
train gender dependent models. Another important
contribution to accurate modeling, however, is the de�-
nition of two HMMs for each word that must be trained:
one \short" model for fast uttered words, and another
\long" model for more articulated pronunciations. For
short words like digits, the number of state of each
model must be relatively large, in comparison with
standard HMMs, so that it accounts for less than two
frames per sentence on the average. We will show that,
even if the resulting system has a relatively large num-
ber of states, good results are obtained with a reduced
number of densities per state on the adult database of
the TI/NIST connected digit corpus.
The organization of the paper is as follows. Section 2
introduces the motivations for di�erent sets and topolo-
gies of models and illustrates the approach used to ob-
tain automatically the number of states for each word
model. Section 3 details the model training procedure.
Finally, the results obtained using the set of models
introduced in Section 2 are presented in Section 4.

2. MODEL TOPOLOGY

SELECTION

As introduced in the previous Section, our simple ap-
proach toward accurate acoustic and duration model-
ing for whole word connected word recognition, de�nes
a \short" and a \long", gender dependent, HMM for
each word that must be trained. This solution tries
also to reduce the trajectory folding problem.
The rational behind this choice is to account for dif-
ferent speaking rates, occurring not only in di�erent
utterances of the speakers, but also within a connected
word utterance of the same speaker.
This e�ect is shown in Table 1. It presents the average
duration - in frames of 10 ms - of the utterances of digit
ONE in the TI/NIST training corpus of adult speakers,
as a function of their position in the sentence. The
sentences in the TI corpus include strings of length 1,
2, 3, 4, 5, and 7 quite uniformly distributed, thus, these
distributions are similar for other digits.
The average duration of an utterance of digit ONE
is 300ms, corresponding to 30 frames in our system.
Looking at Table 1, it is interesting to note that:

� isolated words last more than average

� the duration of the �rst word is always less than
the average duration and is pronounced faster
than the other digits in the sentence

� the duration of the last word in the sentence is
always greater than the average duration, and it
is preceded by a short word pronunciation

� in the middle of long sentences there is a prepausal
lengthening e�ect, clearly evident for sentences
including 5 and 7 digits.

A single model, therefore, even if it is provided with
skip transitions, don't seem adequate neither for dura-
tion nor for accurate acoustic modeling. The latter is
true because the acoustic realizations of fast and slowly
uttered words are likely to be di�erent.
Our models have the same, standard, left to right topol-
ogy, with the possibility of skipping one state, but each
model has a di�erent number of states.
For each word w, the number of states of its two HMMs
is selected according to the following steps:

� The duration of every occurrence of word w in the
training set is generated by a forced alignment,
using the set of models currently available.

� The histogram of the duration of all the (Nw) ut-
terances of w is obtained. Then the histogram
values are cumulated up to Nw=4, Nw=2, and
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Figure 1: Cumulative distribution of the duration of
the male speaker training utterances of digit ONE

3=4 �Nw respectively, and their corresponding du-
ration values recorded.

� The number of states assigned to \short" and
\long" duration models of word w corresponds
to the �rst and last duration value respectively.
The central value is used, instead, as a duration
threshold in the training procedure.

Figure 1 shows the cumulative distribution of the du-
ration of the male speaker training utterances of digit
ONE, and the number of states selected for this HMM
model according to the above described procedure. Each
word occurrence in the training set, then, contributes
to the reestimation either of a \short" or of a \long"
model: the decision is based on its duration compared
with the duration threshold.
Table 2 shows the number of states obtained for each
word model in the TI/NIST database. It is worth not-
ing that the resulting the number of states of each
model is comparable to the duration of its training
samples, thus, the average occupation of each state is
about one frame per sentence on the average. This
contributes to the reduction of the trajectory folding
phenomenon.

3. TRAINING

In our systems, training is performed by a few iteration
of a segmental K-means Viterbi alignment procedure
that allows the number of densities for each state to be
automatically selected to �t the actual distribution of
the training data as described in [3]. Since the number
of states of each models corresponds to the average du-
ration of short and long utterances of a word, it is large
enough to allow accurate acoustic and duration model-
ing using a small number of densities per mixture. The

maximum number of densities per state mixture was
�xed to 8 for the reported experiments.
The bootstrap models are obtained as follows:

� Since isolated words have greater than average
duration, it would be impossible to train reli-
able initial \short" models. Thus, both \short"
and \long" isolated word bootstrap models are
trained using all the isolated utterances in the
training set.

� A segmental K-means Viterbi alignment is per-
formed on the whole training set and the word
duration statistics is collected

Training proceeds, then, through a few iterations of the
following steps:

1. Generation, for each training sentence, of its HMM
graph including the sequence of the appropriate
\short" or \long" models according to the align-
ment obtained using the current set of models.

2. segmental K-means Viterbi alignment

Finally, several Baum-Welch estimation iterations are
performed, keeping �xed the HMM graphs, until a con-
vergence threshold is satis�ed.

4. EXPERIMENTAL RESULTS

The experiments have been performed on the 20KHz
TI/NIST connected digit corpus of adult speakers in-
cluding 8700 sentence (28583 words) for testing. The
signal is passed through a preemphasis �lter and every
10 ms a 20 ms Hamming window is applied. A 512
point FFT is then performed and the frequency range
up to 8 KHz subdivided into 20 Mel-scale �lters is used
to obtain 12 cepstral coe�cients.
The observation vector used in the recognition exper-
iments reported in this paper includes 26 parameters

only: 12 liftered cepstral coe�cients (C1 � C12), 12
delta cepstral coe�cients, the energy, and its �rst or-
der derivative. Moreover, in these experiments, we did
not perform any energy or cepstral mean normaliza-
tion. The results shown in the Table 3, where the word
and string error rates are reported, have been obtained
with unknown length decoding using the following gen-

der dependent acoustic models:

� The baseline system has a single model per digit
with 8 Gaussian densities per state and a single
state silence model with 16 Gaussian densities.

� The double model systems include two models
per word with a maximum of 1, 4 or 8 Gaussian
densities per state and a single state silence model
with 16 Gaussian densities.



Models oh zero one two three four �ve six seven eight nine
Baseline 16 34 22 22 22 28 30 24 40 20 20

Short model 20 35 24 20 24 27 30 33 36 20 28
Long model 35 49 39 34 38 43 50 52 47 31 43

Threshold 27 42 30 26 31 35 38 40 41 24 36

Table 2: Number of states for baseline, \short" and \long" duration HMMs, and duration threshold for the word
models

Acoustic models No. of states No. of densities sub/del/ins WER (%) SER (%)

Baseline (8 G) 278 4292 74/38/26 138 (0.58%) 107 (1.23%)
Two models (1 G) 1548 2244 106/75/20 201 (0.85%) 172 (1.97%)
Two models (4 G) 1518 5497 54/35/4 93 (0.39%) 82 (0.94%)
Two models (8 G) 1518 9021 52/31/7 90 (0.38%) 79 (0.91%)

Table 3: Performance comparison of the proposed modeling with respect to a classical gender dependent system

It is worth noting that, despite a very small word in-
sertion penalty, the number of insertion errors is par-
ticularly low for the two models systems. This is due
to the relatively large number of states used for the
models, that cannot be easily traversed by observation
sequences that do not �t well their distributions.
The obtained results are comparable with the best ones
reported in the literature for models with a larger num-
ber of densities. In particular, the error rate of the 4
Gaussian double model system is comparable with the
result in [2] - 93 (0.33%) WER 84 (0.97%) SER - for
their MLE trained baseline system with 840 context-

dependent states, 26880 Gaussian models, (they reach
0.24% WER and 0.72% SER with discriminative train-

ing), and with those presented in [6] - 99 (0.35%) WER
0.98% SER - using 716 states and 45824 densities, (their
best result is 0.24% WER 0.74% SER using 22812 den-
sities and Linear Discriminant Analysis).

5. CONCLUSIONS

In this paper we presented a simple modeling and train-
ing approach trying to cope with duration and trajec-
tory folding problems.
The experimental results show that a signi�cant error
rate reduction can be obtained with respect to the clas-
sical HMM models. Moreover, our results are compa-
rable with the best ones reported in the literature for
models with a larger number of densities.
Since we did not use so far the second order derivatives,
cepstral mean normalization, and discriminative train-
ing, we believe that good margins of improvement are
still left for our system. The results of preliminary ex-

periments using RASTA �ltering and the second order
derivatives in the observation vector are very promis-
ing and con�rm our �ndings. We are also currently
experimentig this approach for subword unit modeling.
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