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ABSTRACT

Hidden Markov modeling of speech waveforms is
studied and applied to speech recognition of clean and
noisy signals. Signal vectors in each state are assumed
Gaussian with zero mean and a Toeplitz covariance
matrix. This model allows short signal vectors and
thus is useful for speech signals with rapidly chang-
ing second order statistics. It can also be straightfor-
wardly adapted to noisy signals especially when the
noise is additive and independent of the signal. Since
no closed form solution exists for the maximum like-
lihood estimate of the Toeplitz covariance matrices,
an expectation-maximization procedure was used and
efficiently implemented. HMM’s with Toeplitz as well
as asymptotically Toeplitz (e.g., circulant, autoregres-
sive) covariance matrices are theoretically and exper-
imentally studied. While asymptotically all of these
matrices provide similar performance, they differ sig-
nificantly when the frame length is finite. Recogni-
tion results are provided for clean and noisy signals at
0-30dB SNR.

1. INTRODUCTION

Hidden Markov modeling of speech signals can ei-
ther be applied to vectors of speech samples or to fea-
ture vectors of the signal. Feature vectors coustitute
a transformation of signal vectors. The most popular
feature vector consists of low order cepstral compo-
nents of the signal vector. Feature vectors reduce di-
mensionality by maintaining the most relevant char-
acteristics of the signal for recognition applications.
Since feature vectors constitute nonlinear transforma-
tion of signal vectors, they are difficult to analyze and
compensate for input noise, especially when this noise
is additive. This has been the stumbling block in in-
troducing cepstral based speech recogunition systems
to real world applications.

Hidden Markov modeling of speech waveforms is
simpler than that of feature vectors, and can be easily
adapted to input signals which have been degraded

by additive noise. In this case the signal mean in each
state is zero and only the covariance of the signal in
each state must be estimated during training. This es-
timation problem becomes manageable if structured
covariance matrices are assumed. A useful class of
structured covariance matrices is that of asymptoti-
cally Toeplitz matrices. This class includes Toeplitz,
circulant, and autoregressive matrices. Circulant and
autoregressive matrices have been successfully used in
speech recognition applications (see, e.g., [1] and the
references therein).

The goals of this paper are to investigate hidden
Markov modeling of speech waveforms and to com-
pare it with cepstral based hidden Markov modeling
in recognition of clean and noisy signals. The noise is
assumed additive and statistically independent of the
signal. We primarily use Toeplitz covariance matri-
ces since they allow relatively short signal vectors and
thus are useful for speech signals with rapidly chang-
ing second order statistics. It was shown in [4] that
all asymptotically Toeplitz covariance matrices result
in the same asymptotic performance, as the frame
length goes to infinity, if the signal is indeed a hid-
den Markov model (HMM) and its state-dependent
covariance matrices are Toeplitz. For a finite dimen-
sion frame length, however, we demonstrate that hid-
den Markov modeling using Toeplitz covariance matri-
ces outperforms hidden Markov modeling using other
asymptotically Toeplitz matrices.

Maximum Likelihood (ML) estimation of Toeplitz
covariance matrices for Gaussian signals has no ex-
plicit form. An elegant solution using the expectation-
maximization (EM) algorithm was proposed in [2]-[3].
Here the Toeplitz matrix is embedded in a larger circu-
lant matrix for which an explicit ML estimation exists.
Each iteration of the EM algorithm consists of extend-
ing the signal vector and estimation of the circulant
matrix of the extended vector. An efficient implemen-
tation of this algorithm is described in Section 2.

Implementation of hidden Markov modeling of



speech waveforms requires gain adaptation since the
signal may be recorded under different gain conditions
during training and recognition, and the gain contour
of each signal utterance varies due to non-stationarity
of speech signals. We have used the gain adaptation
approach of [1] in the state level. This resulted in a
non-iterative gain estimation approach when the sig-
nal is clean. The details of this approach are described
in Section 3.

HMM’s in this work were always trained on clean
signals and tested on clean and noisy signals. Since
waveform modeling is used here, HMM’s for the noisy
signals are obtained from the trained HMM’s by
adding an estimate of the noise covariance matrix to
the signal covariance matrix in each state. The ap-
plication of this approach to recognition of the ten
English digits from the TIDIGITS database which
have been contaminated by additive white noise is de-
scribed in Section 4. It is demonstrated that the pro-
posed Toeplitz-based hidden Markov modeling per-
forms similarly to a cepstral based speech recogni-
tion system when the signal is clean. Both provide
about 2% error rate for isolated digits. Furthermore,
for noisy signals with signal to noise ratios of 0dB
to 30dB, the error rate of the Toeplitz-based hidden
Markov modeling system is only 2% higher than that
obtained from a cepstral based system which has been
retrained for the noisy signal.

2. HMM’S WITH TOEPLITZ
COVARIANCES

The Toeplitz HMM is completely specified by the
initial state probabilities mg, the state transition prob-
abilities aqg, and the state-dependent Toeplitz covari-
ance matrices Rg, where o, 8 = 1,..., M and M is the
number of HMM states. The ML estimation of a state
Toeplitz covariance matrix, say R, is obtained from

max {—logdet R —tr{ R~ ls 1
B { { 1 (1)

where Z i is the set of all Toeplitz structured covari-
ance matrices and § = 25:1 Ynyi /N represents the
sample covariance of the N signal vectors y,, € ¥ as-
signed to the particular state. Here # denotes conju-
gate transpose. We are interested in the set Tg = 7 g,
i.e. the set of K x K symmetric non-negative definite
Toeplitz matrices and the set Tr = Cx C 7T g, i.e. the
set of K’ x K symmetric non-negative definite circulant
matrices.

The maximization in (1) is achieved using the EM
approach [2],[3]. The main idea is to embed the
Toeplitz covariance matrix in a larger circulant covari-

ance matrix for which the explicit ML estimate exists.
The ML estimate when T = Cg in (1) is given by

Ry = % Z

(i=)=(k=1)

Sij + > Sij |,

(i=j)=K—(k—1)
(2)

and will henceforth be denoted by R = circ(S) [2].
The Toeplitz matrix is embedded as the K x K upper
left block of an L x L circulant matrix. Such em-
bedding requires extension of the K-dimensional data
vectors to L-dimensional data vectors. The missing
L — K components are replaced by their conditional
mean estimate given the K-dimensional data vectors
and a current estimate of the L x L circulant covari-
ance matrix. Thus, an EM iteration begins with an
estimate of an L x L circulant covariance matrix, pro-
ceed with estimation of the L — K missing data com-
ponents, and ends with a new circulant covariance ma-
trix estimate. The process is repeated until a stopping
criterion is met.

More formally, for each signal vector y, € RE as-
signed to the state, let =, = (y#,n%)* denote the
L-dimensional complete statistics data vector with
Ny € RE~E . In the EM approach, we attempt to max-
imize the difference in likelihood between successive
estimates of R € Tx. Let R’ be a current estimate
of R. Using Jensen’s inequality we have

p(y|R) — log p(y|R')

- 1o . / ( ’/|R)

= lg/ (nly, R') pJan,)dn

> /p(nl.%R')lO ((y 7;'”;:)) (3)

To maximize the difference between successive esti-
mates of R, we must perform the following maximiza-
tion

/17(n|y,R’)10gp(y,n|R)dn

max
RET}
= max FElo ,1|R) R’
s {logp(y,n|R)|y, R'}
= max E{logp(y,n|C y, C’ 4
Jax {log p(y,n|C)ly, C"} (4)

where C' represents a current estimate of the circulant
matrix C. The second equality in (4) holds when L is
sufficiently larger than K. An upper bound on L was
provided in [2], but this bound is too large for most
applications. Good results were obtained here using
L = 2K as was done in [3].

The vectors x,, formed by concatenation of the vec-
tors y, and 7, have circulant covariance matrices by



coustruction. Using the standard assumption in the
HMM literature that the vectors {,, } are statistically
independent, we may write logp(y, n|C) as

logp(y,n|C) = —g (Llog 27 + logdet C + tr(C ' Sp))
(5)
where
N
T ol Bl I " S
n=1 '

Thus our problem becomes that of finding the circu-
lant matrix achieving the following maximization

max F {-logdetC —tr(C~'Sy)|y,C'}
CECL
= max {—logdetC —tr(S,C 1)}  (7)
CECL

where S, = E{SL|y,C'}. By replacing the n¥ and
Nni terms in (6) by their conditional expected values
and performing the sample averaging we obtain

- s —-SP#*Q*
S = [ —QPS QPSP*Q*+Q ] ®)

where the (L — K) x K matrix P and the (L — K) x
(L — K) matrix Q are obtained from the following
partition of the inverse of the current estimate of the
circulant matrix

Clz[g (5#1]. (9)

The maximizing C of (7) is C = circ(§,,). Hence, the
maximizing R is the K x K upper left hand block of
C.

3. GAIN ADAPTATION

Accounting for the varying gain contours of speech
signals is a key issue in waveform modeling for speech
recognition. Here we use a gain adaptation approach
in which HMM’s are trained for gain normalized sig-
nals, and then used in conjunction with estimates of
gain contours of the test signals [1]. Contrary to [1],
we apply the gain adaptation approach at the state
level. Thus, at each time instant, each speech vector
y; has associated with it M state based gain factors.
This results in decoupling of gain and state estima-
tion. Letting g = {g; 3 > 0}, where t = 0,...,T and
B=1,..., M}, gain adapted training aims at estimat-
ing the parameter set A of the HMM as follows

Ill)i\lXIllZLXp(yv |g,/\)7 (10)
g

where p(y, |g, A) denotes the pdf of the gain normalized
signals y;/g: 5. Given a set of gain adapted trained
HMM’s {A,,}, m = 1,---, M, gain adapted recogni-
tion assoclates a test signal y with the m—th word
obtained from

(11)

Here the gain contour of the test data is estimated and
combined with each hypothesized HMM A;.

max max p(y|g, ;).
7 g .

The maximization over the gain sequence in (10)
and (13) can be simplified using standard HMM as-
sumptions resulting in [4]

i R;l Yt

(9rs)" = = (12)

When noisy signals {z} are only available for recogni-
tion, gain adapted recognition is performed by

maxmgaxp(z (13)
?

where now {\;} represents the parameters sets of
HMM’s for the noisy signals. As in the clean case
this maximization can be considerable simplified but
unfortunately we know of no closed form expression
for the maximizing gain. This maximization may be
performed using numerical procedures such as New-
ton’s method or may be implemented using the EM
algorithm. In [1] the following EM based solution was
derived

Gt = 1/Ktr (WRy + (Wz,)(Wz)* )R] (14)

where W = g%, R, (97, Rs, + Ry) " and g; , is the
previous estimate of the gain.

4. RESULTS AND DISCUSSION

Hidden Markov modeling of speech waveforms us-
ing Toeplitz and asymptotically Toeplitz covariance
matrices was tested in recogunition of clean and noisy
signals and compared with a cepstral based system.
Recognition of the ten English digits from the isolated
word portion of the TIDIGITS database was stud-
ied. The noise was computer generated additive white
noise at SNR of 0-30dB. The training set consisted of
56 male speakers and 56 female speakers, each con-
tributing two utterances per digits. Separate HMM’s
for male and female speakers were trained, and each
test utterance was compared against the 20 HMM’s
representing the models for male and female speak-
ers. The test data consisted of 56 male and 57 female
speakers which were different from those in the train-
ing set. The data was downsampled to 8Khz. Left
to right HMM’s with M = 18 states were exclusively



used with a single Gaussian pdf in each state. The
dimension of the signal vectors in waveform model-
ing was 80 samples. For cepstral modeling we used
signal vectors of 500 samples, with overlapping of 400
samples, from which 20 cepstral components were esti-
mated. The cepstral components were estimated from
smoothed periodograms. No cepstral derivatives of
any kind were used.

Error Rates vs. SNR for ASR techniques
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Figure 1: Performance of ASR systems in noise
for: waveform HMM with Toeplitz covariances (x),
waveform HMM with circulant covariances (o), wave-
form HMM with AR covariances (x), cepstral HMM
trained on clean signals (+), cepstral HMM retrained
on cach noise level ().

The following five speech recognition systems have
been compared: 1. HMM for the signal waveforms
with a Toeplitz covariance matrix in each state, 2.
HMM for the signal waveforms with a circulant co-
variance matrix in each state, 3. HMM for the signal
waveforms with an autoregressive covariance matrix
of order 12 in each state, 4. HMM for cepstral vectors
trained on clean signals, 5. HMM for cepstral vectors
retrained on the noisy signals for each noise condition.
All waveform based systems were trained on clean sig-
nals and used gain adaptation. These systems were
compensated for noise by appropriate modification of
their state covariance matrices.

The performance of these systems in recognizing
clean and noisy speech are shown in Fig. 1. For clean
signals, both the waveform HMM with Toeplitz covari-
ance and the cepstral based HMM provided compara-
ble results where the cepstral HMM was slightly bet-
ter. In both cases the error rate was below 2%. The
other waveformm HMM’s provided error rates higher
than 2%. For noisy signals, the best performance was

achieved, as expected, by the cepstral HMM which
was retrained for each noise condition. When retrain-
ing is not allowed, and no compensation for noise is
performed, the cepstral HMM system trained on the
clean signal was rather sensitive to the input noise
and provided the worst performance at SNR’s smaller
than 25dB. The waveform based HMM systems show
gradual performance degradation as the input SNR
decreased. The waveform HMM using Toeplitz covari-
ances outperformed those using circulant and AR co-
variances and provided error rates of about 2% higher
than the retrained cepstral based system. This perfor-
mance gap was smaller at the very low and very high

SNR levels.
5. COMMENTS

We have studied hidden Markov modeling of speech
signal waveforms using state dependent Gaussian dis-
tributions with zero mean and Toeplitz, as well as
asymptotically Toeplitz, covariance matrices. The
motivation for this work was the feasible and straight-
forward manner in which such models can be adapted
to noisy signals when the noise is additive and sta-
tistically independent of the signal. This is in con-
trast with the difficulties associated with adaptation
of the standard non-linear cepstral based HMM’s to
noisy signals when the noise is additive and statisti-
cally independent of the signal (see, e.g., [5]). For
HMM’s trained on the clean signals and white Gaus-
sian noise, we have achieved error rate that in higher
by only 2% than that obtained using a cepstral based
system which has been retrained for each noise condi-
tion. Complexity of the proposed system is low as the
EM approach needs only to be applied during training
of the HMM’s.
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