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ABSTRACT

Hidden Markov modeling of speech waveforms is

studied and applied to speech recognition of clean and
noisy signals. Signal vectors in each state are assumed
Gaussian with zero mean and a Toeplitz covariance

matrix. This model allows short signal vectors and
thus is useful for speech signals with rapidly chang-

ing second order statistics. It can also be straightfor-
wardly adapted to noisy signals especially when the
noise is additive and independent of the signal. Since

no closed form solution exists for the maximum like-
lihood estimate of the Toeplitz covariance matrices,

an expectation-maximization procedure was used and
e�ciently implemented. HMM's with Toeplitz as well

as asymptotically Toeplitz (e.g., circulant, autoregres-
sive) covariance matrices are theoretically and exper-
imentally studied. While asymptotically all of these

matrices provide similar performance, they di�er sig-
ni�cantly when the frame length is �nite. Recogni-

tion results are provided for clean and noisy signals at
0-30dB SNR.

1. INTRODUCTION

Hidden Markov modeling of speech signals can ei-
ther be applied to vectors of speech samples or to fea-

ture vectors of the signal. Feature vectors constitute
a transformation of signal vectors. The most popular

feature vector consists of low order cepstral compo-
nents of the signal vector. Feature vectors reduce di-
mensionality by maintaining the most relevant char-

acteristics of the signal for recognition applications.
Since feature vectors constitute nonlinear transforma-

tion of signal vectors, they are di�cult to analyze and
compensate for input noise, especially when this noise

is additive. This has been the stumbling block in in-
troducing cepstral based speech recognition systems
to real world applications.

Hidden Markov modeling of speech waveforms is
simpler than that of feature vectors, and can be easily
adapted to input signals which have been degraded

by additive noise. In this case the signal mean in each

state is zero and only the covariance of the signal in
each state must be estimated during training. This es-

timation problem becomes manageable if structured
covariance matrices are assumed. A useful class of
structured covariance matrices is that of asymptoti-

cally Toeplitz matrices. This class includes Toeplitz,
circulant, and autoregressive matrices. Circulant and

autoregressive matrices have been successfully used in
speech recognition applications (see, e.g., [1] and the

references therein).

The goals of this paper are to investigate hidden
Markov modeling of speech waveforms and to com-

pare it with cepstral based hidden Markov modeling
in recognition of clean and noisy signals. The noise is
assumed additive and statistically independent of the

signal. We primarily use Toeplitz covariance matri-
ces since they allow relatively short signal vectors and

thus are useful for speech signals with rapidly chang-
ing second order statistics. It was shown in [4] that
all asymptotically Toeplitz covariance matrices result

in the same asymptotic performance, as the frame
length goes to in�nity, if the signal is indeed a hid-

den Markov model (HMM) and its state-dependent
covariance matrices are Toeplitz. For a �nite dimen-

sion frame length, however, we demonstrate that hid-
den Markov modeling using Toeplitz covariance matri-
ces outperforms hidden Markov modeling using other

asymptotically Toeplitz matrices.

Maximum Likelihood (ML) estimation of Toeplitz
covariance matrices for Gaussian signals has no ex-

plicit form. An elegant solution using the expectation-
maximization (EM) algorithm was proposed in [2]-[3].

Here the Toeplitz matrix is embedded in a larger circu-
lant matrix for which an explicit ML estimation exists.

Each iteration of the EM algorithm consists of extend-
ing the signal vector and estimation of the circulant
matrix of the extended vector. An e�cient implemen-

tation of this algorithm is described in Section 2.

Implementation of hidden Markov modeling of



speech waveforms requires gain adaptation since the
signal may be recorded under di�erent gain conditions

during training and recognition, and the gain contour
of each signal utterance varies due to non-stationarity

of speech signals. We have used the gain adaptation
approach of [1] in the state level. This resulted in a
non-iterative gain estimation approach when the sig-

nal is clean. The details of this approach are described
in Section 3.

HMM's in this work were always trained on clean

signals and tested on clean and noisy signals. Since
waveform modeling is used here, HMM's for the noisy

signals are obtained from the trained HMM's by
adding an estimate of the noise covariance matrix to
the signal covariance matrix in each state. The ap-

plication of this approach to recognition of the ten
English digits from the TIDIGITS database which

have been contaminated by additive white noise is de-
scribed in Section 4. It is demonstrated that the pro-

posed Toeplitz-based hidden Markov modeling per-
forms similarly to a cepstral based speech recogni-
tion system when the signal is clean. Both provide

about 2% error rate for isolated digits. Furthermore,
for noisy signals with signal to noise ratios of 0dB

to 30dB, the error rate of the Toeplitz-based hidden
Markov modeling system is only 2% higher than that
obtained from a cepstral based system which has been

retrained for the noisy signal.

2. HMM'S WITH TOEPLITZ

COVARIANCES

The Toeplitz HMM is completely speci�ed by the

initial state probabilities �� , the state transition prob-
abilities a�� , and the state-dependent Toeplitz covari-
ance matricesR� , where �; � = 1; : : : ;M andM is the

number of HMM states. The ML estimation of a state
Toeplitz covariance matrix, say R, is obtained from

max
R2IR

�
� log detR � trfR�1Sg

	
(1)

where IR is the set of all Toeplitz structured covari-
ance matrices and S =

P
N

n=1 yny
#
n
=N represents the

sample covariance of the N signal vectors yn 2 <K as-

signed to the particular state. Here # denotes conju-
gate transpose. We are interested in the set IR = T K ,

i.e. the set of K �K symmetric non-negative de�nite
Toeplitz matrices and the set IR = CK � T K , i.e. the
set ofK�K symmetric non-negative de�nite circulant

matrices.

The maximization in (1) is achieved using the EM

approach [2],[3]. The main idea is to embed the
Toeplitz covariance matrix in a larger circulant covari-

ance matrix for which the explicit ML estimate exists.
The ML estimate when IR = CK in (1) is given by

Rkl =
1

K

0
@ X
(i�j)=(k�l)

Sij +
X

(i�j)=K�(k�l)

Sij

1
A ;

(2)
and will henceforth be denoted by R = circ(S) [2].

The Toeplitz matrix is embedded as the K�K upper
left block of an L � L circulant matrix. Such em-
bedding requires extension of the K-dimensional data

vectors to L-dimensional data vectors. The missing
L �K components are replaced by their conditional

mean estimate given the K-dimensional data vectors
and a current estimate of the L � L circulant covari-
ance matrix. Thus, an EM iteration begins with an

estimate of an L�L circulant covariance matrix, pro-
ceed with estimation of the L�K missing data com-

ponents, and ends with a new circulant covariance ma-
trix estimate. The process is repeated until a stopping

criterion is met.

More formally, for each signal vector yn 2 <K as-
signed to the state, let xn = (y#

n
; �#

n
)# denote the

L-dimensional complete statistics data vector with
�n 2 <L�K . In the EM approach, we attempt to max-
imize the di�erence in likelihood between successive

estimates of R 2 T K . Let R0 be a current estimate
of R. Using Jensen's inequality we have

log p(yjR)� log p(yjR0)

= log

Z
p(�jy;R0)

p(y; �jR)

p(y; �jR
0)
d�

�

Z
p(�jy;R0) log

p(y; �jR)

p(y; �jR0)
d� (3)

To maximize the di�erence between successive esti-

mates of R, we must perform the following maximiza-
tion

max
R2T K

Z
p(�jy;R0) log p(y; �jR)d�

= max
R2T K

E
�
log p(y; �jR)jy;R0

	

= max
C2CL

E
�
log p(y; �jC)jy;C0

	
(4)

whereC 0 represents a current estimate of the circulant

matrix C. The second equality in (4) holds when L is
su�ciently larger than K. An upper bound on L was
provided in [2], but this bound is too large for most

applications. Good results were obtained here using
L = 2K as was done in [3].

The vectors xn formed by concatenation of the vec-
tors yn and �n have circulant covariance matrices by



construction. Using the standard assumption in the
HMM literature that the vectors fxng are statistically

independent, we may write log p(y; �jC) as

log p(y; �jC) = �
N

2

�
L log 2� + log detC + tr(C�1

SL)
�

(5)
where

SL = 1=N

NX
n=1

�
yn

�n

� �
y#
n

�#
n

�
: (6)

Thus our problem becomes that of �nding the circu-

lant matrix achieving the following maximization

max
C2CL

E
�
� log detC � tr(C�1SL)jy;C

0
	

= max
C2CL

f� log detC � tr(ŜLC
�1)g (7)

where ŜL = EfSLjy;C
0g. By replacing the �#

n
and

�n�
#
n
terms in (6) by their conditional expected values

and performing the sample averaging we obtain

ŜL =

�
S �SP#

Q
#

�QPS QPSP
#
Q
# +Q

�
(8)

where the (L�K)�K matrix P and the (L�K)�
(L � K) matrix Q are obtained from the following

partition of the inverse of the current estimate of the
circulant matrix

C
�1

=

�
A P#

P Q�1

�
: (9)

The maximizing C of (7) is C = circ(ŜL). Hence, the

maximizing R is the K �K upper left hand block of
C.

3. GAIN ADAPTATION

Accounting for the varying gain contours of speech

signals is a key issue in waveform modeling for speech
recognition. Here we use a gain adaptation approach
in which HMM's are trained for gain normalized sig-

nals, and then used in conjunction with estimates of
gain contours of the test signals [1]. Contrary to [1],

we apply the gain adaptation approach at the state
level. Thus, at each time instant, each speech vector

yt has associated with it M state based gain factors.
This results in decoupling of gain and state estima-
tion. Letting g = fgt;� > 0g, where t = 0; : : : ; T and

� = 1; : : : ;Mg, gain adapted training aims at estimat-
ing the parameter set � of the HMM as follows

max
�

max
g

p(y; jg; �); (10)

where p(y; jg; �) denotes the pdf of the gain normalized
signals yt=gt;� . Given a set of gain adapted trained

HMM's f�mg, m = 1; � � � ;M , gain adapted recogni-
tion associates a test signal y with the m�th word

obtained from

max
i

max
g

p(yjg; �i): (11)

Here the gain contour of the test data is estimated and

combined with each hypothesized HMM �i.

The maximization over the gain sequence in (10)
and (13) can be simpli�ed using standard HMM as-

sumptions resulting in [4]

(g�
t;st

)2 =
y
#
t
R�1
st
yt

K
: (12)

When noisy signals fzg are only available for recogni-

tion, gain adapted recognition is performed by

max
i

max
g

p(zjg; �i): (13)

where now f�ig represents the parameters sets of
HMM's for the noisy signals. As in the clean case

this maximization can be considerable simpli�ed but
unfortunately we know of no closed form expression
for the maximizing gain. This maximization may be

performed using numerical procedures such as New-
ton's method or may be implemented using the EM

algorithm. In [1] the following EM based solution was
derived

g
2
t;st

= 1=Ktr
�
(WRw + (W zt)(W zt)

#)R�1
st

�
(14)

whereW = g02
t;st
Rst

(g02
t;st
Rst

+Rw)
�1 and g0

t;st
is the

previous estimate of the gain.

4. RESULTS AND DISCUSSION

Hidden Markov modeling of speech waveforms us-

ing Toeplitz and asymptotically Toeplitz covariance
matrices was tested in recognition of clean and noisy

signals and compared with a cepstral based system.
Recognition of the ten English digits from the isolated
word portion of the TIDIGITS database was stud-

ied. The noise was computer generated additive white
noise at SNR of 0-30dB. The training set consisted of

56 male speakers and 56 female speakers, each con-
tributing two utterances per digits. Separate HMM's
for male and female speakers were trained, and each

test utterance was compared against the 20 HMM's
representing the models for male and female speak-

ers. The test data consisted of 56 male and 57 female
speakers which were di�erent from those in the train-

ing set. The data was downsampled to 8Khz. Left
to right HMM's with M = 18 states were exclusively



used with a single Gaussian pdf in each state. The
dimension of the signal vectors in waveform model-

ing was 80 samples. For cepstral modeling we used
signal vectors of 500 samples, with overlapping of 400

samples, from which 20 cepstral components were esti-
mated. The cepstral components were estimated from
smoothed periodograms. No cepstral derivatives of

any kind were used.
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Figure 1: Performance of ASR systems in noise

for: waveform HMM with Toeplitz covariances (�),
waveform HMM with circulant covariances (�), wave-
form HMM with AR covariances (�), cepstral HMM

trained on clean signals (+), cepstral HMM retrained
on each noise level (/).

The following �ve speech recognition systems have
been compared: 1. HMM for the signal waveforms

with a Toeplitz covariance matrix in each state, 2.
HMM for the signal waveforms with a circulant co-
variance matrix in each state, 3. HMM for the signal

waveforms with an autoregressive covariance matrix
of order 12 in each state, 4. HMM for cepstral vectors

trained on clean signals, 5. HMM for cepstral vectors
retrained on the noisy signals for each noise condition.

All waveform based systems were trained on clean sig-
nals and used gain adaptation. These systems were
compensated for noise by appropriate modi�cation of

their state covariance matrices.

The performance of these systems in recognizing
clean and noisy speech are shown in Fig. 1. For clean

signals, both the waveform HMMwith Toeplitz covari-
ance and the cepstral based HMM provided compara-

ble results where the cepstral HMM was slightly bet-
ter. In both cases the error rate was below 2%. The

other waveform HMM's provided error rates higher
than 2%. For noisy signals, the best performance was

achieved, as expected, by the cepstral HMM which
was retrained for each noise condition. When retrain-

ing is not allowed, and no compensation for noise is
performed, the cepstral HMM system trained on the

clean signal was rather sensitive to the input noise
and provided the worst performance at SNR's smaller
than 25dB. The waveform based HMM systems show

gradual performance degradation as the input SNR
decreased. The waveform HMM using Toeplitz covari-

ances outperformed those using circulant and AR co-
variances and provided error rates of about 2% higher
than the retrained cepstral based system. This perfor-

mance gap was smaller at the very low and very high
SNR levels.

5. COMMENTS

We have studied hidden Markov modeling of speech

signal waveforms using state dependent Gaussian dis-
tributions with zero mean and Toeplitz, as well as

asymptotically Toeplitz, covariance matrices. The
motivation for this work was the feasible and straight-

forward manner in which such models can be adapted
to noisy signals when the noise is additive and sta-
tistically independent of the signal. This is in con-

trast with the di�culties associated with adaptation
of the standard non-linear cepstral based HMM's to

noisy signals when the noise is additive and statisti-
cally independent of the signal (see, e.g., [5]). For
HMM's trained on the clean signals and white Gaus-

sian noise, we have achieved error rate that in higher
by only 2% than that obtained using a cepstral based

system which has been retrained for each noise condi-
tion. Complexity of the proposed system is low as the

EM approach needs only to be applied during training
of the HMM's.

6. REFERENCES

1. Y. Ephraim, \Gain-adapted hidden Markov models for
recognition of clean and noisy speech," IEEE Trans. on
Speech Proc., vol. 40, no. 6, pp. 1303{1316, June 1992.

2. A. Dembo, C. L. Mallows, and L. A. Shepp, \Embedding
non-negative de�nite Toeplitz matrices in non-negative
de�nite circulant matrices, with application to covariance
estimation," IEEE Trans. on Inform. Theory, vol. 35, no.
6, pp. 1206{1212, Dec. 1989.

3. M. I. Miller and D. L. Snyder, \The role of likelihood and
entropy in incomplete-data problems. Applications to esti-
mating point-process intensities and Toeplitz constrained
covariances," Proc. of the IEEE, vol. 75, no. 7, pp. 892{
907, July 1987.

4. W. J. J. Roberts and Y. Ephraim, \Hidden Markov mod-
eling of speech using Toeplitz covariance matrices," sub-
mitted for publication.

5. M. J. F. Gales and S. J. Young, \Robust continuous speech
recognition using parallel model combination," IEEE
Trans. on Speech and Audio Processing, vol. 4, no. 5, pp.
352{359, Sept. 1996.


