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ABSTRACT

This paper describes a speech enhancement system using a
novel combination of a Fast Wavelet Transform structure,
together with “Wiener filtering” in the wavelet domain. The
specific application of interest is the  enhancement of speech
when a cellular phone is used within a moving vehicle.
Subjective tests carried out using speech with additive vehicle
noise at a signal-to-noise ratio of 10 dB indicate that the
Wavelet transform-based Wiener filtering approach works well.
In particular, the technique was compared to several other
common enhancement methods such as thresholding applied in
the wavelet domain, FFT-based Wiener filtering, and spectral
subtraction, and was found to outperform these other
techniques.

1. INTRODUCTION

Degradation of speech quality caused by acoustic background
noise is common in most speech processing applications,
including mobile communications and speech recognition.
Therefore, the problem of removing uncorrelated noise
components from noisy speech has been widely studied in the
past, and still remains an important issue in the field of speech
processing research.

Classical approaches to signal enhancement include FFT-based
Wiener filtering (Vaseghi, 1996) and spectral subtraction
(Virag, 1995). Recently, a novel approach for denoising seismic
signals using the wavelet transform was proposed by Donoho
(1995). It employed thresholding in the wavelet domain and was
shown to work well for signals corrupted by additive white
Gaussian noise.

Subsequently, this work was extended for speech signals by
Seok and Bae (1997) whose experimental results demonstrated
that speech enhancement using the wavelet transform showed
potential, when the speech was corrupted by additive white
Gaussian noise. Their results also showed that thresholding in
the wavelet domain for speech signals has the additional
problem that the wavelet coefficients due to unvoiced speech
could be reduced to zero after thresholding, if the thresholds are
not carefully calculated. This can cause a severe reduction in the
intelligibility of the reconstructed signal.

The specific application of interest in this paper is the
enhancement of the speech signal when cellular phones are used
within moving vehicles. Typically, the Signal to Noise Ratio
(SNR) obtained from a cellular phone used within a moving
vehicle is between 0 and 10 dB, resulting in increased listener
effort and loss of intelligibility. Moreover, the poor signal to

noise ratio in which cellular phones must operate complicates
the design of the next generation of low bit rate speech coders
for this application. This means that very high performance
speech enhancement is required.

The most common approach to speech enhancement in non-
cellular applications is based upon Wiener filtering (Vaseghi,
1996) in which short term estimates of the noise and speech
signals are used to define an adaptive filter through which the
noisy speech is passed, to remove as much noise energy as
possible whilst simultaneously removing as little speech energy
as possible. The Wiener filter approach can result in satisfactory
speech enhancement but tends to distort the speech signal in
perceptually unacceptable ways when the SNR is very low, as it
will be in cellular applications. For example, the noise, although
reduced in magnitude, is given a musical nature which is
perceptually more objectionable than the original high level
noise. Therefore, straightforward application of the Wiener filter
approach is unsuitable for use in cellular telephony.

In this paper, a novel technique for speech enhancement in the
cellular environment is described. The method uses a
combination of the Wavelet transform with “Wiener filtering” in
the wavelet domain. The technique was compared to several
other enhancement methods such as Donoho's wavelet-domain
thresholding technique and FFT-based Wiener filtering and
spectral subtraction, by means of subjective tests using speech
with additive vehicle noise at a signal-to-noise ratio of 10 dB.
Results indicate that the proposed method provides better
speech enhancement than the other techniques.

2. PROPOSED METHOD

2.1 FWT-based Speech Enhancement
System

In this Section, the speech enhancement method proposed in the
paper will be described in more detail. The system architecture
is shown in Fig. 1. The first stage is the processing of the noisy
speech signal using a Fast Wavelet Transform (FWT). A four
level FWT decomposition (Strang and Nguyen, 1996) is
performed resulting in five subbands covering the frequency
range from 0 - 4000 Hz. 7KH RXWSXW RI WKH IDVW ZDYHOHW

VWUXFWXUH LV D VHW RI ´ZDYHOHW FRHIILFLHQWVµ� A noisy speech
input signal results in noisy wavelet coefficients at the output of
the FWT decomposition. According to Donoho (1995),
thresholding the wavelet coefficients has potential for
recovering the original signal. However, it has been found that it
is difficult to accurately estimate threshold values for all six
frequency bands such that the re-synthesised speech is of



acceptable quality. Various methods of calculating thresholds
were investigated, but none of these proved suitable for high
quality speech enhancement. Also, based on experimental
results from studies of spectral subtraction, inaccurate noise
threshold values result in musical noise in the reconstructed
speech.

Figure 1: Speech enhancement system architecture
(VAD = Voice Activity Detector)

2.2 Wavelet Denoising using Wiener
Filtering

In order to avoid thresholding the wavelet coefficients, another
method was investigated, whereby the wavelet coefficients were
compressed. This method is based on “Weiner filtering” in the
wavelet domain, as opposed to the well-known Weiner filtering
in the frequency domain (Zelniker and Taylor, 1994). Figure 2
shows a block diagram of the conventional Wiener filtering
concept.

Enhanced
speech

)(ˆ ns

Speech s(n)

Noise η(n)

Speech + noise
q(n)

Wiener Filter

Figure 2: Block diagram of Wiener filtering paradigm

From Figure 2, we can write:

)()()( nnsnq η+= (1)

and
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We can define an error signal, e(n), as follows:

)(ˆ)()( nsnsne −= (3)

where s(n) is the speech signal, h(n) is the Wiener filter impulse
response and η(n) is the additive noise component.

By definition, a Wiener filter is a filter that minimises the mean
square error, E (calculated as the sum of the square of the error
samples over a frame). The Wiener filter coefficients h(n) are
found by solving an equation in which the derivative of the
mean square error with respect to the filter coefficients is set to
zero as shown in Equation (4).
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Equation (4) shows that the derivatives of the mean square error
can be expressed in terms of the autocorrelation functions of the
speech signal alone, Rss(τ), and the combined speech and noise
signal, Rqq(i,j). The equation can be re-expressed in the
frequency domain using the Wiener-Khinchine relationship
between power spectrum and autocorrelation function:

)}({)(2 τω ssRFTS = (5)

Transforming Equation (4) using this result yields the well
known Wiener filter frequency response.
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where H(ω) is the transfer function of the Wiener filter, S2(ω) is
the speech power spectrum and N2(ω) is the noise power
spectrum.

Intuitively, it would appear that a “Wiener filter” could be
defined in a similar way using wavelets drawn from an
orthogonal set, instead of using orthogonal sinusoids. However,
this only yields a Wiener filter in the true minimum mean square
error sense if the Wiener Khinchine relationship applies to
wavelets in the same way as to complex sinusoids. Analysis
shows that the relationship applies to complex sinusoids and  all

similar basis functions, uk i,  with the following property:
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Where k is the first basis function parameter, such as frequency,
i is the second parameter, such as time, and p is a shift in value
of the second parameter.

Unfortunately, the Daubechies wavelets used in our experiments
do not appear to have this property and so a true Wiener filter
will not be obtained. However, of more practical significance is
that the basis function set on which the noise removal filter is
based, should have the property of discriminating between the
signal subspaces occupied by the speech and the noise. The
FWT appears to have this property because each wavelet is
associated with an octave frequency band which matches the
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spectral distribution of speech energy.

Given this argument we propose simply modifying Equation (4)
to operate in terms of wavelets of scale value a:
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where S2(a) and N2(a) are the speech and noise powers,
calculating from the wavelet coefficients at scale a. The “Wiener
gain” for each scale (which corresponds to a particular octave
band in Figure 1) is used to modify the wavelet coefficients of
the noisy signal before reconstructing the signal in the time
domain by inverse wavelet transformation.  For the FWT, the
band is defined by an index, i, and so the Wiener gain, ki, is
calculated using the following equation:
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where Si
2 is the speech energy and Ni

2 is the noise energy in
band i.

Noise segments were detected using a voice activity detector,
and the noise power was calculated as follows:
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where M is the number of wavelet coefficients in a frequency
band, L is the number of noisy frames over which the noise
power is averaged and ni(l,j) are the wavelet coefficients
associated with sub-band i for the noise input during frame j.

The signal plus noise power was calculated during speech
regions as the sum of the squares of the wavelet coefficients.
The noise power is then subtracted from the speech plus noise
power to obtain the speech power. With these power values, the
Wiener gain can be calculated for each frequency band using
Equation (9). If the estimate of the noise power is greater than
the estimate of the signal plus noise power, then ki for that band
may be set to zero or a small value.

If dij is the jth noisy wavelet coefficient in band i, then the
denoised wavelet coefficient is given by

dij(denoised) = dij . ki   (11)

These denoised wavelet coefficients are used to reconstruct the
speech signal. When the speech power is much greater than the
noise power, which would normally be the case during a voiced
speech frame, then ki ≈1. If the speech and noise powers are
comparable in value, then ki ≈ 0.5; this would normally be the
case during onset and offset of voicing, or in unvoiced regions.

2.3 Wavelet Denoising using Donoho
Thresholding

For  comparative purposes, wavelet denoising using Donoho’s
thresholding technique (Donoho, 1995) was implemented. The
threshold T was calculated using the following formula:

T = σ 2 log(N) (12)

where σ is the estimate of  the standard deviation of the noise
and N is the window length of the signal. For a fixed N, the
threshold value is constant for all sub-bands in the wavelet
domain. The noise standard deviation σ was estimated during
the non-speech frames.  Soft thresholding was carried out on the
wavelet coefficients before reconstructing the signal.

3. RESULTS

The proposed speech enhancement algorithm has been tested as
follows. In the first case, clean speech was passed through the
enhancement algorithm, and, as expected, the output of the
algorithm was identical to the input, i.e. the technique is
transparent to speech which already has a high SNR. Clean
speech samples and vehicle noise samples were added to obtain
a noisy speech signal, thus simulating the use of a cellular
phone in a moving vehicle. The noisy speech had a signal-to-
noise ratio of 10 dB.

Non-overlapping frames of 160 samples each (20 ms) were used
for analysis. The fast wavelet decomposition was obtained from
each frame, using Daubechies ‘db8’ wavelet (Daubechies,
1990). A voice activity detector was used to determine whether
the current frame was speech or non-speech. If the frame was
non-speech, the estimate of the noise power in each band was
updated. The Wiener gain for each band was calculated and the
wavelet coefficients were scaled by the corresponding gain
value for each band using  Equation (11). Figure 3 shows a plot
of the spectrum of one frame of voiced speech, along with the
spectrum of one frame of vehicle noise. It can be clearly seen
that the vehicle noise has significant low frequency content, and
does not have a flat spectrum like Gaussian noise.

To illustrate the operation of the speech enhancement algorithm,
Figure 4(a) shows the original speech waveform of a female
speaker, sampled at 8 kHz (voiced speech segments as
determined by VAD). The speech with added car noise is shown
in Figure 4(b). Figure 4(c) shows the Wiener gain as a function
of frame number for the lowest frequency subband, while Figure
4(d) shows the Wiener gain for the highest frequency subband.
It can be seen that the Wiener gain is reduced from its maximum
value of 1 during segments where the speech energy is lower.
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Figure 3: Spectra of voiced speech and vehicle noise.
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Figure 4: (a)  Original speech waveform (Female speaker)
(b)  Speech + Car Noise waveform
(c)  Wiener gain in 0-500 Hz subband
(d)  Wiener gain in 2-4 kHz subband

For comparative purposes, speech enhancement using Donoho’s
threshoding method, using a fixed threshold across all sub-
bands, was not satisfactory. Therefore, Equation (12) was
modified so that an individual threshold was calculated for each
band. This modified threshold improved the quality of the
enhanced speech, but noise removal not as good as Wiener
filtering in the Wavelet domain.

Speech enhancement using a similar Wiener filtering technique
to that used on wavelet coefficients, was performed on
coefficients obtained from an FFT. In this case, the FFT
spectrum was divided into five octave frequency bands,
similarly spaced as for the five-band Wavelet Transform. To
prevent edge effects with the FFT, speech frames were
overlapped by 50% and windowed using a Hamming window.
The Wiener gain per band  was calculated as described above,
and the FFT coefficients per band were scaled by the
corresponding Wiener gain value. Again, the quality of the
enhanced speech was not as good as that obtained using the
proposed algorithm.

4. CONCLUSIONS

A novel speech enhancement method using Wiener filtering in
the Wavelet domain has been proposed in this paper. The
method has been evaluated by subjective listening tests. From
these tests, the proposed approach to speech enhancement has
been found to give better performance to other enhancement
methods, including wavelet thresholding and FFT-based Wiener
filtering. Work is in progress to implement the enhancement
procedure using the Wavelet Packet Transform and auditory
masking.
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