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ABSTRACT

We present an approach to joint application of spec-
tral subtraction (SPS) and model combination (PMC) for
speech recognition in noisy environments. Contrary to pre-
vious solutions e.g. [2] distortion introduced by SPS is not
modeled in PMC. Instead we ensure compatibility of the
two methods by adapting parameters of SPS (spectral floor
and overestimation factor) according to the present signal-
to-noise-ratio (SNR). The scheme leaves the model combi-
nation process unchanged which simplifies parameter esti-
mation and reduces computation time. Experiments show
significant improvements when using PMC with modified
SPS instead of standard SPS.

1. INTRODUCTION

Speech recognition is required in various environments.
Besides other fields the use of speech controlled systems
in cars has gained much interest in recent years. Here
several functions can be accessed by speech very comfort-
able and with lower distraction of the driver. Examples
are speech controlled cellular phones, navigation systems,
broadcasting services and others.

Though usage of speech in that kind of environment re-
quires a highly robust recognizing system. Just imagine
the noise inside the car when driving on a highway. But
it is not enough to adapt the system to high speeds. Also
slowly and more rapidly changing environments should be
covered when accelerating or breaking is done or a tunnel
is entered.

It seems not to be reasonable to collect speech samples for
all these situations and train the system with such sort
of data. On the one hand this would cause high efforts
of time and costs for recording and training on the other
hand the system may then be robust in very special noise
situations, but may perform poor in low noise situations.
For these reasons it is more efficient to train the system
with clean speech samples and adapt it during recognition
like in the model combination (PMC) scheme [3]. Alter-
natively subtraction of stationary noise can be done using
the well known method of spectral subtraction (SPS). Re-
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cently the implementation of both methods was discussed
in [2] with encouraging results.

Unfortunately combination of both methods can’t be done
straightforward because SPS introduces distortion in the
resulting speech signal and PMC relies on undistorted
speech. Effects of SPS are even worse when adaptation
of the noise model is done during recognition like in [5].
The approach of this paper suggests a new and fast way
of using SPS and PMC without expensive modeling of dis-
tortion. Instead we try to minimize distortion by adapting
parameters of the SPS according to the SNR what makes
modification of PMC unnecessary.

The forthcoming sections include a short outline of SPS
and PMC. Preliminary experiments are conducted that
motivate our approach and lead to its implementation. Fi-
nally experiments and results are presented.

2. SPS AND PMC

Model combination and SPS are both methods for robust
speech recognition but work differently. Nevertheless they
have potential for joint application because they are based
on the model of additive noise in the spectral domain:

F(i) = S() + N(i) (1)

F(i) is the input power spectrum of the i-th frequency
band, S and N are the clean speech power spectrum and
the noise power spectrum, respectively.

Furthermore they act in subsequent processing steps using
different techniques. Thus model combination may com-
pensate for the residual noise left in the signal after SPS.
Spectral subtraction works as follows: In speech pauses
the noise characteristics are estimated and simultaneously
subtracted from the input signal. To enhance the qual-
ity of the results and to minimize distortion caused by the
mismatch of the actual and the estimated noise power, two
parameters are introduced. These are the overestimation
factor o and the spectral floor 3. So the clean speech spec-
trum 5(i) is estimated as follows [1]:

56) = { F(i) —aE{N(i)} F(i)—aE{N(i)} > BF(i)
BF (i) otherwise
(2)

Contrary to that the PMC doesn’t clean the speech signal
but tries to incorporate the noise into the recognition pro-
cess. Thus it is necessary to estimate a model for the noise
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Figure 1: Model combination scheme using LDA—-codebook and online noise estimation

and to combine that model with the existing models of
clean speech available from training. The theory of model
combination is explained in [3]. The extended model com-
bination scheme used in this work is illustrated in Figure 1.
Details can be found in [5].

3. MOTIVATION

One of the benefits of this work should be that the model
combination process like stated above can be used without
modifications. For that purpose we concentrate now on
the effects of SPS for subsequent processing.

Normally when SPS is used, training with SPS and a cer-
tain amount of noisy speech data is done. However this
is not suitable for PMC because model combination re-
quires models of clean speech. Thus a recognizer for clean
speech has to be trained. Now the distortion of SPS is not
included in the speech models which may cause poor per-
formance when SPS is used during the recognition process.
We did some preliminary experiments to examine the ef-
fects of SPS on a recognition system trained without SPS.
The main goal of these tests is to see what parameter set-
tings are suitable for using SPS in several noise situations.
For that purpose we added car noise to clean speech to sim-
ulate 6 different noise conditions. The parameters o (over-
estimation factor) and 3 (spectral floor) were varied in the
interval « € [0.0,0.1,...,1.4] and 3 € [0.0,0.1,...,1.0]. In
case of @ = 0.0 or 8 = 1.0 no subtraction of noise is done
which corresponds to a system without SPS. The results
for each driving situation were scaled separately from white
(highest recognition accuracy) to black (lowest accuracy)
to get an idea of the best parameter set (white area) as
plotted in Figure 2.

The figure shows that optimal parameter sets («,3) are de-
pendent on the current noise situation. It is evident that
the noisier the environment the more of the actual noise
estimate has to be subtracted. In other words we have to
enlarge o and to reduce .

This may be explained as effects of the implementation of
SPS. In reality the noise estimate will only roughly resem-
ble the actual noise mean, because of slight noise changes

during speech activity, noise adaptation during speech and
the overall non-optimality of speech-pause detection and
the noise estimation process. Furthermore the actual noise
is always greater or lower than its mean, so too much or
too less noise will be subtracted, especially when noise vari-
ance is high.

This kind of distortion is harmful if these effects are not
taken into account during training. In that case for low
noise data SPS should be switched off (¢ = 0.0 or 3 = 1.0)
while for medium and high noise situations subtraction
and overestimation of noise is suitable. Parameter setting
should be done to subtract a maximum of noise while min-
imizing distortion.

4. IMPLEMENTATION

As we have stated in the previous section the subtraction
process is governed mainly by the spectral floor and the
overestimation factor of SPS. These parameters regulate
the amount of noise that is subtracted from the noisy
speech signal. Experiments suggest that for each noise
level different parameter sets yield optimal performance.
Setting the parameters adaptively according to the noise
level leads to undegraded results at high SNR while in low
SNR regions the benefits of the noise reduction process
are significant. Adapting the SPS to different noise levels
was already introduced by Lockwood (nonlinear SPS [4]).
This is equivalent to an overestimation factor regulated by
a function of the noise estimate.

However like it can be seen in Figure 2 SPS can’t be op-
timized by varying the overestimation factor o alone. Ad-
ditionally we have to set the spectral floor § in a similar
manner and so adapt both overestimation factor and floor
for optimal performance.

For that reason we suggest to set both parameters depen-
dent of the current noise situation. Of course the signal-
to-noise ratio (SNR) can be used for that purpose. The
SNR may be estimated easily by using the noise estimates
E{N?} and the speech estimates S of each frequency band:

SNR = 10  log,, (%) Y
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Figure 2: Results of a recognition system trained with clean speech and SPS turned off. Experiments were performed
with different parameter sets (a,3) of the SPS for several SNR. Each image was scaled separately from white (highest

recognition accuracy) to black (lowest accuracy).

In our implementation the SNR is computed during speech
activity only and smoothed over several hundred millisec-
onds of speech input to get reliable estimates. Now we
introduce two functions for regulating the parameters:

a = f(SNR) (4)

B = g(SNR) (5)
To determine suitable functions for setting the parameters
further testing was done. In our case application of SPS
with PMC has to be optimized. So tests analog to the
previous section were performed with SPS and PMC. Due
to the additional noise compensation of PMC results are
slightly different. In general optimal performance was
obtained when subtracting a smaller amount of noise than
with SPS alone. Nevertheless results are similar to those
illustrated in Figure 2. Examination of the corresponding
patterns lead to the following conclusions:
Overestimation was limited to a < 1.0, because no further
improvement could be noticed with increasing « when
PMC was active. Also very low flooring didn’t improve
performance even in high noise situations so 3 was forced
to be greater 0.15.
With this outline and by selecting a linear-type function
we suggest to set @ and 3 as formulated in Equations 4
and 5 according to Figure 3. Also non-linear functions
have been tested, but there was no evidence that these
lead to significantly better results.

5. EXPERIMENTS

Experiments were performed to evaluate the efficiency of
the proposed method. For that purpose several test sets
were used. The first one includes speech samples from 23
speakers. 100 digit strings containing 3-5 German dig-
its were recorded of each speaker in a standing car (SNR
about 28 dB). Recordings of noise in a moving car at 100
km/h and 140 km/h were added to those speech samples.
So we obtained test sets of 3 environments (0 km/h, 100
km/h and 140 km/h).

Another test set (called “mixed”) not included in training
was recorded in a moving car. It contains 1650 digit strings
(avg. 3.5 digits per utterance) at different velocities with
an average SNR of 8.

Training of the speech recognition system was done with
clean speech only in order to use model combination. We
used 10 cepstral features plus normalized energy. Vectors
of nine subsequent frames were concatenated and trans-
formed with the LDA. PMC was applied to the codebook
means before LDA-transformation (see Figure 1).

As can be seen in Figure 4 in case of the car standing (0
km/h) performance of a system trained with clean speech
is maintained also with the new SPS. Here the system per-
forms significantly better than without modifications. At
100 km/h both versions of SPS yield comparable results,
while at 140 km/h the modified SPS again performs bet-
ter. Also for the mixed test set the benefits of the new
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SPS with PMC are significant.

It may be noticed that noise estimation and adaptation of
the noise model for PMC is done after completion of SPS.
When using SPS with PMC in that way, training of a noise
model before recognition is not appropriate because resid-
ual noise varies according to the parameters of the SPS.

6. CONCLUSION

A new scheme of applying both SPS and model combina-
tion was introduced, that minimizes distortion of SPS in
high SNR regions while improving recognition rate for very
noisy speech. This is done by adapting the overestimation
factor and the spectral floor according to the SNR. Con-
trary to previous schemes no consideration of distortion
in model combination is necessary. Thus no modification
of the PMC scheme is required, which reduces parameters
and calculations. Experiments show that the modified SPS
yields improved performance compared to a standard SPS-
PMC scheme.
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