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ABSTRACT

We present an approach to joint application of spec-

tral subtraction (SPS) and model combination (PMC) for

speech recognition in noisy environments. Contrary to pre-

vious solutions e.g. [2] distortion introduced by SPS is not

modeled in PMC. Instead we ensure compatibility of the

two methods by adapting parameters of SPS (spectral 
oor

and overestimation factor) according to the present signal-

to-noise-ratio (SNR). The scheme leaves the model combi-

nation process unchanged which simpli�es parameter esti-

mation and reduces computation time. Experiments show

signi�cant improvements when using PMC with modi�ed

SPS instead of standard SPS.

1. INTRODUCTION

Speech recognition is required in various environments.

Besides other �elds the use of speech controlled systems

in cars has gained much interest in recent years. Here

several functions can be accessed by speech very comfort-

able and with lower distraction of the driver. Examples

are speech controlled cellular phones, navigation systems,

broadcasting services and others.

Though usage of speech in that kind of environment re-

quires a highly robust recognizing system. Just imagine

the noise inside the car when driving on a highway. But

it is not enough to adapt the system to high speeds. Also

slowly and more rapidly changing environments should be

covered when accelerating or breaking is done or a tunnel

is entered.

It seems not to be reasonable to collect speech samples for

all these situations and train the system with such sort

of data. On the one hand this would cause high e�orts

of time and costs for recording and training on the other

hand the system may then be robust in very special noise

situations, but may perform poor in low noise situations.

For these reasons it is more e�cient to train the system

with clean speech samples and adapt it during recognition

like in the model combination (PMC) scheme [3]. Alter-

natively subtraction of stationary noise can be done using

the well known method of spectral subtraction (SPS). Re-
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cently the implementation of both methods was discussed

in [2] with encouraging results.

Unfortunately combination of both methods can't be done

straightforward because SPS introduces distortion in the

resulting speech signal and PMC relies on undistorted

speech. E�ects of SPS are even worse when adaptation

of the noise model is done during recognition like in [5].

The approach of this paper suggests a new and fast way

of using SPS and PMC without expensive modeling of dis-

tortion. Instead we try to minimize distortion by adapting

parameters of the SPS according to the SNR what makes

modi�cation of PMC unnecessary.

The forthcoming sections include a short outline of SPS

and PMC. Preliminary experiments are conducted that

motivate our approach and lead to its implementation. Fi-

nally experiments and results are presented.

2. SPS AND PMC

Model combination and SPS are both methods for robust

speech recognition but work di�erently. Nevertheless they

have potential for joint application because they are based

on the model of additive noise in the spectral domain:

F (i) = S(i) +N(i) (1)

F (i) is the input power spectrum of the i-th frequency

band, S and N are the clean speech power spectrum and

the noise power spectrum, respectively.

Furthermore they act in subsequent processing steps using

di�erent techniques. Thus model combination may com-

pensate for the residual noise left in the signal after SPS.

Spectral subtraction works as follows: In speech pauses

the noise characteristics are estimated and simultaneously

subtracted from the input signal. To enhance the qual-

ity of the results and to minimize distortion caused by the

mismatch of the actual and the estimated noise power, two

parameters are introduced. These are the overestimation

factor � and the spectral 
oor �. So the clean speech spec-

trum Ŝ(i) is estimated as follows [1]:

Ŝ(i) =

�
F (i)� �EfN(i)g F (i)� �EfN(i)g > �F (i)

�F (i) otherwise

(2)

Contrary to that the PMC doesn't clean the speech signal

but tries to incorporate the noise into the recognition pro-

cess. Thus it is necessary to estimate a model for the noise
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Figure 1: Model combination scheme using LDA{codebook and online noise estimation

and to combine that model with the existing models of

clean speech available from training. The theory of model

combination is explained in [3]. The extended model com-

bination scheme used in this work is illustrated in Figure 1.

Details can be found in [5].

3. MOTIVATION

One of the bene�ts of this work should be that the model

combination process like stated above can be used without

modi�cations. For that purpose we concentrate now on

the e�ects of SPS for subsequent processing.

Normally when SPS is used, training with SPS and a cer-

tain amount of noisy speech data is done. However this

is not suitable for PMC because model combination re-

quires models of clean speech. Thus a recognizer for clean

speech has to be trained. Now the distortion of SPS is not

included in the speech models which may cause poor per-

formance when SPS is used during the recognition process.

We did some preliminary experiments to examine the ef-

fects of SPS on a recognition system trained without SPS.

The main goal of these tests is to see what parameter set-

tings are suitable for using SPS in several noise situations.

For that purpose we added car noise to clean speech to sim-

ulate 6 di�erent noise conditions. The parameters � (over-

estimation factor) and � (spectral 
oor) were varied in the

interval � 2 [0:0; 0:1; : : : ; 1:4] and � 2 [0:0; 0:1; : : : ; 1:0]. In

case of � = 0:0 or � = 1:0 no subtraction of noise is done

which corresponds to a system without SPS. The results

for each driving situation were scaled separately from white

(highest recognition accuracy) to black (lowest accuracy)

to get an idea of the best parameter set (white area) as

plotted in Figure 2.

The �gure shows that optimal parameter sets (�,�) are de-

pendent on the current noise situation. It is evident that

the noisier the environment the more of the actual noise

estimate has to be subtracted. In other words we have to

enlarge � and to reduce �.

This may be explained as e�ects of the implementation of

SPS. In reality the noise estimate will only roughly resem-

ble the actual noise mean, because of slight noise changes

during speech activity, noise adaptation during speech and

the overall non-optimality of speech-pause detection and

the noise estimation process. Furthermore the actual noise

is always greater or lower than its mean, so too much or

too less noise will be subtracted, especially when noise vari-

ance is high.

This kind of distortion is harmful if these e�ects are not

taken into account during training. In that case for low

noise data SPS should be switched o� (� = 0:0 or � = 1:0)

while for medium and high noise situations subtraction

and overestimation of noise is suitable. Parameter setting

should be done to subtract a maximum of noise while min-

imizing distortion.

4. IMPLEMENTATION

As we have stated in the previous section the subtraction

process is governed mainly by the spectral 
oor and the

overestimation factor of SPS. These parameters regulate

the amount of noise that is subtracted from the noisy

speech signal. Experiments suggest that for each noise

level di�erent parameter sets yield optimal performance.

Setting the parameters adaptively according to the noise

level leads to undegraded results at high SNR while in low

SNR regions the bene�ts of the noise reduction process

are signi�cant. Adapting the SPS to di�erent noise levels

was already introduced by Lockwood (nonlinear SPS [4]).

This is equivalent to an overestimation factor regulated by

a function of the noise estimate.

However like it can be seen in Figure 2 SPS can't be op-

timized by varying the overestimation factor � alone. Ad-

ditionally we have to set the spectral 
oor � in a similar

manner and so adapt both overestimation factor and 
oor

for optimal performance.

For that reason we suggest to set both parameters depen-

dent of the current noise situation. Of course the signal-

to-noise ratio (SNR) can be used for that purpose. The

SNR may be estimated easily by using the noise estimates

EfNg and the speech estimates Ŝ of each frequency band:

SNR = 10 � log
10

� P
i
Ŝ(i)P

i
EfN(i)g

�
(3)
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Figure 2: Results of a recognition system trained with clean speech and SPS turned o�. Experiments were performed

with di�erent parameter sets (�,�) of the SPS for several SNR. Each image was scaled separately from white (highest

recognition accuracy) to black (lowest accuracy).

In our implementation the SNR is computed during speech

activity only and smoothed over several hundred millisec-

onds of speech input to get reliable estimates. Now we

introduce two functions for regulating the parameters:

� = f(SNR) (4)

� = g(SNR) (5)

To determine suitable functions for setting the parameters

further testing was done. In our case application of SPS

with PMC has to be optimized. So tests analog to the

previous section were performed with SPS and PMC. Due

to the additional noise compensation of PMC results are

slightly di�erent. In general optimal performance was

obtained when subtracting a smaller amount of noise than

with SPS alone. Nevertheless results are similar to those

illustrated in Figure 2. Examination of the corresponding

patterns lead to the following conclusions:

Overestimation was limited to � � 1:0, because no further

improvement could be noticed with increasing � when

PMC was active. Also very low 
ooring didn't improve

performance even in high noise situations so � was forced

to be greater 0.15.

With this outline and by selecting a linear-type function

we suggest to set � and � as formulated in Equations 4

and 5 according to Figure 3. Also non-linear functions

have been tested, but there was no evidence that these

lead to signi�cantly better results.

5. EXPERIMENTS

Experiments were performed to evaluate the e�ciency of

the proposed method. For that purpose several test sets

were used. The �rst one includes speech samples from 23

speakers. 100 digit strings containing 3{5 German dig-

its were recorded of each speaker in a standing car (SNR

about 28 dB). Recordings of noise in a moving car at 100

km/h and 140 km/h were added to those speech samples.

So we obtained test sets of 3 environments (0 km/h, 100

km/h and 140 km/h).

Another test set (called \mixed") not included in training

was recorded in a moving car. It contains 1650 digit strings

(avg. 3.5 digits per utterance) at di�erent velocities with

an average SNR of 8.

Training of the speech recognition system was done with

clean speech only in order to use model combination. We

used 10 cepstral features plus normalized energy. Vectors

of nine subsequent frames were concatenated and trans-

formed with the LDA. PMC was applied to the codebook

means before LDA-transformation (see Figure 1).

As can be seen in Figure 4 in case of the car standing (0

km/h) performance of a system trained with clean speech

is maintained also with the new SPS. Here the system per-

forms signi�cantly better than without modi�cations. At

100 km/h both versions of SPS yield comparable results,

while at 140 km/h the modi�ed SPS again performs bet-

ter. Also for the mixed test set the bene�ts of the new
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Figure 4: Digit string recognition rates for di�erent recognizers

SPS with PMC are signi�cant.

It may be noticed that noise estimation and adaptation of

the noise model for PMC is done after completion of SPS.

When using SPS with PMC in that way, training of a noise

model before recognition is not appropriate because resid-

ual noise varies according to the parameters of the SPS.

6. CONCLUSION

A new scheme of applying both SPS and model combina-

tion was introduced, that minimizes distortion of SPS in

high SNR regions while improving recognition rate for very

noisy speech. This is done by adapting the overestimation

factor and the spectral 
oor according to the SNR. Con-

trary to previous schemes no consideration of distortion

in model combination is necessary. Thus no modi�cation

of the PMC scheme is required, which reduces parameters

and calculations. Experiments show that the modi�ed SPS

yields improved performance compared to a standard SPS-

PMC scheme.
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