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ABSTRACT

In this paper we investigate an alternative approach to the design
of low-bit rate (LBR) quantisation. This approach incorporates
phonetic information into the structure of Line Spectra
Frequency (LSF) codebooks. In prior work vector quantisation
(VQ) has been used to quantise stochastic processes. Speech
signals can, however, be described in terms of phonetic
segments and linguistic rules. A trained L SF codebook, like the
phonetic inventory of a language, is a static description of
spectral behaviour of speech. As clear relationships exist
between phonetic segments and LSFs the structure of an LSF
codebook can be analysed in terms of the phonetic segments.
The investigation leads to the conclusion that phonetic
information can be usefully employed in codebook training in
terms of perceptua performance and bit-rate reductions.

1. INTRODUCTION

The quantised spectral envelope of speech represents an
important part of the bit allocation in speech coding. Low bit-
rate approaches to spectral envelope quantisation utilize Linear
Prediction (LP) techniques to exploit the redundancies offered
through the quasi-periodic structure of speech. The efficient
representation of LP coefficients (or LPCs) can be achieved
using reflection coefficients, the arcsine of reflection
coefficients, log-area ratios, intermittence spectral fregquency
pairs and line-spectral frequency-pairs (LSFs). LSFs are a very
popular representation due to their stability and advantages in
efficiency and error correction.

Reducing rate-distortion levels while maintaining speech
transparency is incressingly difficult at low-bit rates.  The
success of several LBR quantisation techniques is due to the
utilisation of speech structure in quantiser design. Paliwa and
Atal [1] report performance improvements by placing emphasis
on formant pesks improving the representation of vowel
structure, a factor considered to be perceptually important in
speech. It has also been shown that humans have a reduced
perceptua resolution in the higher frequency bands of speech
[2]. Listeners were found to have difficulty distinguishing
unvoiced speech from power-matched gaussian white noise.

Varying the levels of information content required for different
speech classes has aso been explored. In some work on
variable rate coding [3,4] speech was divided into genera
categories based on silence, voiced and unvoiced speech and
voice-onset information. While this and other work [5] has

claimed to use phonetic segmentation, there has been no attempt
to incorporate actual phonetic information into the design of the
quantiser.

The main motivation for the work presented in this paper is to
investigate the role of phonetic structure in the quantisation of
low-bit rate speech coding parameters. Prior work [6] shows
that inter-language phonetic differences are not reflected in the
structure of vector quantisers designed using a standard mean
squared error (MSE) measure.  When quantising speech, not
pertaining to the language of the codebook training set,
guantitative cross-language performance tests yielded significant
type 2 outliers. The three criterion for transparent speech are 1)
an average spectral distortion of 1dB, 2) less than 2% of outliers
between 2dB and 4dB (type 1 outliers) and 3) no outliers greater
than 4dB (type 2 outliers). The globally minimal solution of a
MSE approach provides a robust quantiser design but
information theory [7] suggests that a much lower entropy
solution could be achieved through the analysis and exploitation
of redundancies in the phonetic structure of language.
Fundamental work in information theory [8] suggested that the
minimum entropy of speech is based in part on the phonetic
constituents of language. It is therefore reasonable to suggest
that quantisers design based on phonetic structure will provide
improvements in rate-distortion ratios.

The organization of the paper is asfollows. Section 2 presents a
phonetic analysis of the LSF domain and explains how the
various phonetic components contribute to the overall codebook
structure. Section 3 explains how structura phonetic
information can be used to effectively design LSF codebooks
with comparable subjective and objective quality to standard
codebook design approaches.

2. PHONETIC ANALYSISOF THE LSF
DOMAIN

LSFs, unlike LPCs, provide us with a perceptually meaningful
representation of a section of speech. The frequency values of
the LSFs directly correspond to the speech spectrum and their
behaviour over time can be directly related to evolutionary
characteristics of that spectrum e.g. the growth and dissipation
of formant activity. Further, the analysis of LSFs across
individual phonemes yields important information about the
distinct structure of a given speech segment in the LSF domain.
L SFs (as opposed to other representations of the LP parameters)
are particularly useful since they exhibit a localized spectral
sensitivity property [9]. This facilitates an isolated investigation
into the different phonetic components of language.



2.1 Voiced phonemesin the L SF domain

The relatively high peaks in the LPC power spectrum are
indicative of the presence of voiced speech and, for a correctly
dimensioned LP andysis, will correspond to the formant
activity. In the presence of formants, LSFs have a tendency to
cluster around the angular positions corresponding to the roots
of the LPC filter when they are close to the unit circle [10].
Additionally, L SFs have characteristic regions of activity inside
which their clustering contributes to the representation of
formant behaviour (Figure 1).
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Figure 1: Theregions of activity of LSFs. By converting a0 to 4kHz simulated
formant frequency sweep into L SFs, distinct regions inside which LSFs
contribute to the representation of formants can be seen.

In the LSF domain the regions of activity of formants can be
clearly seen. This region is bounded by a lower diagonal
asymptote corresponding to the true formant frequency (Figure
2). A standard vowel is characterised by a set of formants that
remain constant for a distinct period of time and, typically, two
or three formants are required to specify the vowel. The
synthetic experimental results shown in Figure 1 indicate that
for any one formant present in a particular region of LSF space,
the local (and successive) LSFs tend to cluster towards each
other. This results in the lower asymptotic diagonal that can be
seen across all LSFs. The clear diagonal provides a continuous
mapping of the vowels, from lower frequency back vowels at the
lower left to front vowels at the upper right of the graph. The
characteristic formant location tends to result in the first formant
lying within LSFs 1 to 3, the second formant within LSFs 4 to 6
and the higher formants occurring within the remaining higher
order LSFs. This observation suggests that for split VQ, a 3/3/4
configuration is preferable as it maintains the integrity of
formants. Thus for a particular language, the LSF space for
vocoids can be described with the known characteristic
boundaries of successive formants in a region about the
diagonal.
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Figure 2: Scatter plot displaying the distribution of voiced phonemes (vowels, glides
and semi-vowels) in a phonetically structured 30-bit L SF codebook

2.2 Consonantsin the LSF Domain

As mentioned in section 1, it is well known that humans have a
reduced level of perceptual frequency resolution in the upper
end of the speech spectrum and that in this region it is difficult
to distinguish between the complex structure of unvoiced speech
and simple Gaussian noise. It can be seen in Figure 3 that the
density of LSF vectors is considerably less dense for the
unvoiced consonants.
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Figure 3: Scatter plots displaying the distribution of unvoiced pulmonic consonants
(plosives, fricatives, affricates and laterals) in aphonetically structured
30-hit L SF codebook

Consonants can be completely unvoiced or consist of a mix of
voiced and unvoiced speech. The differing vector distributions
of voiced and unvoiced consonants are shown in Figure 3 and 4.
The voiced diagona aspect of the consonants is clearly seen in
Figure 4. The common unvoiced aspects of each voiced and
unvoiced consonant occupy a common region of the LSF space.
The circled area in Figure 3 and 4 indicates a clear region
pertinent to voiced and unvoiced plosives. Similarly it can be
shown that in a pair-wise manner, the unvoiced content of
voiced and unvoiced consonants map onto similar regions of
L SF space.
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Figure 4: Scatter plot displaying the distribution of voiced pulmonic consonants
(plosives, fricatives, affricates and laterals) in a phonetically structured
30-bit L SF codebook

3. EXPERIMENTS

To further investigate the nature of the phonetic structures
described in section 2 a series of codebooks were generated in a
process whereby a phonetic constraint was used in the training.
The same set of speech was used to train a set of standard MSE

Each vector in the training sequence was allotted to separate
phone-specific LSF codebooks. On completion of training the

codebooks were reintegrated into a complete set of 3 split VQ
sub-codebooks. This was repeated for 5 different codebook
sizes having the specified ratio of vectors for each phoneme

type.
3.3 Quantisation Performance

Objective Tests

Codebook quantisation distortion between the original LPC
spectra and the phonetically quantised LPC spectra was
measured using the standard SD measure (in dB) where for a
particular frameé the SD is measured as:
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whereFs is the sampling frequency arig (f) and Pi(f) are

the LPC power spectrum. The set of TIMIT “test” sentences
was used in objective testing across a range of codebook sizes.
Figure 5 compares the SD quantisation performance of the
phonetically structured quantiser with the standard MSE
guantiser across the set of test sentences. As would be
reasonably expected the MSE trained codebook outperforms the

split VQ codebooks. A “control” set of codebooks was als@honetically trained codebook in terms of the square error based
generated having an arbitrary constraint to ascertain that the rglp. However as is well established coder performance is best
of phonetic structure was the contributing factor in performancessessed using subjective tests. In this case a series of simple
3.1 Speech Database pair-wise comparisons were performed across a listener base.

The speech data used in this investigation were extracted fr®ubjective Tests

the TIMIT database. The data used in training comprised of

speech from 460 speakers (female and male). The speech veset of six sentences (balanced between male and female) were
preprocessed with a sampling frequency of 8kHz. The data weglected from the “test” section of the TIMIT database. The
then phonetically segmented using the TIMIT phonetisentences were encoded using both a standard MSE codebook
transcription corresponding to the training speech (there are 8nd a phonetically structured codebook for a range of codebook
specified phonetic groups used in the TIMIT transcriptiorsizes. The sentences were played to a listener base of ten adult
alphabet). speakers who were asked to indicate which sentence of the pair

. . they preferred. The results of this pair-wise comparison are
3.2 Phonetic codebook design presented in Figure 6.

From the information gathered in section 2 the following=or equivalent quality the MSE and phonetic codebooks would
guidelines can be made with regards to the phonetic designsgore equal rankings in the subjective pair-wise testing.
LSF codebooks. Alternatively listeners would express no preference. The results
. . . ) show that in general the perceptual phonetic codebook (which is

1) From [4] a bit allocation ratio of ~ 3:1 between voiced and pstantially non-optimised) compares favourably with the
unvoiced frames can be used to achieve subjecti@andard MSE trained codebook. Further a dramatic difference
transparency at 24 bits/frame. in performance between the phonetic and control codebooks is
2) Using the TIMIT phonetic labeling, 30 voiced phoneme%deecrgginstrated. It is clear that the use of phpnetlc segmentation
. ) . ] i ques can produce codebooks of similar performance to

comprise the voiced phonetic spacg of English, which aftgxisting training techniques. Further refinement of the

[4] corresponds to 9 vectors per voiced phone. techniques for building phonetically segmented codebooks

3) Due the mapping property of pulmonic consonants, ﬁhpu!d lead to improved overall perfqrmance at Iqwer bit rates.
suffices to train the consonant codebook structure usinI IS important to no_te t_he contrast n these SUbJQCt'Ve resu!ts

. . . . compared to the objective results discussed previously. While

on]y the unvoiced consqnants (if & voiced-unvoiced Pafhis is to be expected from the well-known differences in
exists in the language being modeled). subjective and objective measures of speech quality, the
differences also highlight more complex perceptual effects. For

example investigation of the objective performance
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Figure 6: Pair-wise subjective performance tests comparing standard M SE
codebooks with phonetically segmented codebooks

demonstrates substantially increased type 1 and type 2 outliers
for the phonetic codebook. However these subjective results
indicate that, and checks confirm that the outliers correspond to
perceptually unimportant phonetic segments. A simple
indication of this phenomenon is shown in Figure 7 where
phonetically labeled plots of SD for both standard and phonetic
codebooks are shown.

4. CONCLUDING REMARKS

This investigation into the use of phonetic structure in the design
of LSF codebooks has illustrated through subjective and
objective tests that significant redundancies are present in the
standard MSE style approach to quantiser design. Similar
performance levels to the MSE were reported when using a
quantiser that was designed using training stimulus limited to
individual phoneme categories. This approach further refines
other approaches to phonetic segmentation [4] by restricting the
spectral representation to only the pertinent phonetic regions.
This provides a framework for further reductions of rate-
distortion levels as a function of language.
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Figure 7: Phoneme-by-phoneme SD distortion measures comparing standard M SE
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