Efficient Lattice Representation and Generation
Fuliang Weng Andreas Stolcke Ananth Sankar

Speech Technology and Research Laboratory
SRI International
Menlo Park, California
{fuliang,stolcke,sanka@speech.sri.com

ABSTRACT lattices make expansion with higher-order N-gram LM prohibitive,
and make subsequentrecognition passes slow.

In large-vocabulary, multi-pass eech recogition systems, it is de-
sirable to generate word lattices incorporating a large number @b address this problem, we developed two algorithms to reduce
hypotheses while keeping thetlaee sizes small. We describe two lattice sizes wiout changing the set of hypotheses encoded. Both
new techniques for reducing word lattice sizeshwiit eliminating algorithms are evaluated on the DARPA Hub-4 Broadcast News cor-
hypotheses. The first technique is an algorithm to reduce the sizemis. The first technique (described in Section 2), reduces the size of
non-deterministic bigram word tiices. The algorithm iteratively the bigram lattices generated in the first recognition pass. We also
combines latticenodes and traiitions if local properties show that compare the new algorithm with the classic finite state automaton
this does not change the set of allowed hypotheses. On bigram wdFBA) determinization and minimization algorithms. The second
lattices generated from Hub4 Broadcast News speech, it reduces k&tehnique (described in Section 3 and evaluated in Section 4) con-
tice sizes by half on average. It was also found to produce smallsists of a more compact expansion to trigram lattices. Section 5
lattices than the standard finite state automaton determinization acahcludes.
minimization algorithms. The second technique is an improved al-
gorithm for expanding lattices with trigram language models. In- 2. BIGRAM LATTICE REDUCTION
stead of givingall nodes a unique trigram context, this algorithm
only creates unique contexts for trigrams that are explicitly reprdn SRI's latest Hub4 DECIPHER recognition system [11], bigram
sented in the model. Backed-off trigram probabilities are encoddalttices are generated in the backward pass of a forward-backward
without node duplication by factoring the proliiittes into bigram  two-pass search, based on the word-dependentN-best algorithm [8].
probabilities and backoff weights. Experiments on Broadcast Nevidackward pruning thresholds are used to control lattice sizes. The
show that this method reduces trigram lattice sizes by a factor of @ttice generation method is similar to those described by [5] and
and reduces expansion time by more than a factor of 10. Compart&d.

to conventionally expanded lattices, recognition with the compactl

expanded lattices was also found to be 40% faster, without affectiréspeda"y for noisy speech, the generated bigrafticés can be
recognitionaccuracy: quite large and therefore costly to expand. A common approach in

this case is to tighten the backward pruning threshold, but lattice er-
1. INTRODUCTION ror rates (the minimum word error by any path through thick)

increase. Alternatively, we can try to reduce lattice sizes by remov-
In large-vocabulary speech recdipn systems, higlaccuracy ing redundant nodes and tratiens, i.e., without changing the set
recognition is achieved with reasonable time and space demarffgvord hypotheses allowed by thetlae. Several algorithms with
through a miti-pass process [4], often using lattices as an interme2 Similar goal have been developed. One approachiis to view the lat-
diate representation. In the approach discussed here, all time dif@s as finite state automata (FSAs) and to apply the classical FSA
acoustic information is removed from the lattices, andiaad lat- ~ Minimization algorithm [1]. More recently, algorithms for minimiz-
tice (or word graph) is generated, retaining only the language modeing or reducing weighted word lattices have been developed [3, 9].

(LM) probabilities. The lattice is then used as a constrained LM ifNone of these approaches are directly applicable to our case because
subsequent recognition passes. DECIPHER word lattices have words on nodes, rather than transi-

tions, and are non-deterministic, i.e., the successor for a node is
To incorporate higher-order LM probabilities, lattices typically un-not uniquely determined by the following word. FSA determiniza-
dergo an expansion (node duplication) process [6]. It is desirabl®n is thus required, a process with exponential worst-case time
to generate lattices containing a large number of paths to minénd space complexity (although [3] report very good performance
mize errors as a result of the multi-pass search. However, large practice). We thus chose to develop a fast reduction algorithm

that operates directly on non-deterministitties by eliminating
1The work reported here was funded by DARPA under contract N66003ncal redundancies.
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| [ FO [ F1 [ Total | : d
Before Reduction| 12641 | 45033 | 30083
After Reduction 6777 | 23892 | 15993 b

Table 1: Bigram lattice sizes before and after reduction. a

) ) . (a) Bigram lattice before expansion.
The key observation underlying our algorithm is that if two nodes

in the lattice have the same word label and the same setoéssor c

(or predecessor) nodes, they can be merged without changing the set a d
of word hypotheses encoded by thttie. Depending on whether
nodes are merged according to their predecessor node set or their
successor node set, we have a ‘forward’ or a ‘backward’ reduction

pass, respectively. To get the most out of this approach, forward e
and backward passes should be iterated until no more redundancies a

are found. For brevity, we describe only the backward reduction

algorithm; the forward version is symmetrical. (b) Conventional trigram expansion.

Backward reduction algorithm:  LetSyu(n) be the set of succes- Figure 1: Conventional expansion of a bigram lattice to a trigram
sor nodes of noda. Letword(n) denote the word name of lattice |attice when some incomingodes have the same label.
noden.

e For each I#tice noden in reverse topological order (starting we also compared our local reduction algorithm to the FSA deter-
with the final node): minization/minimization approach. We first converted our node-
based word lattices into the dual FSA representation, a pro-
cess which maps each node to exactly one FSA itians We

* if word(i) = word(j) and Soui(i) = Sout(j), then  then performed FSA determinization and minimization using the

merge nodesand j AT&T FSM Toolkit [2]. Since bigram probabilities can always

be retrofitted into a word lattice wibut changing its structure,

. ) ) _ ) we first set all transition probabilities to 1, effectively turning the
The runtime for this algorithm is proportional to the number ofyejghted FSA operations into their classical, non-weighted coun-

nodes times some constant that depends on the maximum fan-in g o s For comparison purposes, we then transformed the mini-
fan-out of the latticenodes. A more aggressive reduction algorithmy,i-ed FSA back into a node-based wortlitz 2

can be obtained if, instead &ui(i) = Sut(j). only a certain per-

centage of overlap between the two outgoing node sets is requirg@é found that the local reduction algorithm produced slightly
for node merging. This will produce smallettiaes but might add smaller lattices than the FSA-based determinization/minimization.
new hypotheses to thetliwe. We have not yet evaluated the trade-The average number of transitions after FSA-based processing was
offs associated with this variant. about 5% larger for Hub4 FOtlices, and 12% larger for F1 lattices.

. . Recognitionaccuracies with both kinds ofttices were identical,
Experimentally, we fou_nd that almost all of the eventua_ll Size Te5q expected. With regard to recognition speed, the determiniza-
duction occurred in a single pass of the backward algorithm. Thig,/minimization approach could be advantageous because deter-
can be explained by the way the recognizer operatestiihy-  minism narrows the search space at word transitions. However, this
potheses of the same word tend to be generated, starting at difffiss tg e halanced with other overhead in the recognizer that is pro-
ent neighboring frames, but ending at the same time. Furthermo%rtionw to the lattice size (such as time fopiit). On our test set,
lattices tend to be more bushy at the beginning of an utterance; tgnq using the DECIPHER recognizer, both non-deterministic re-

ward the end of the utterance pruning has eliminated & proportiogyceq and determinized/minimized lattices gave virtually identical
ally larger number of hypotheses. Both effects lead to node mergingcognition times.

based on successors being more effective.

— for each pair of predecessor nodéeg) of noden:

3. TRIGRAM LATTICE EXPANSION

We evaluated the effectiveness of the reduction algorithm on lat-

tices generated from the 1996 DARPA Hub4 development test sety, . ’

. . e second approach to obtain smaller expanded N-gram lattices
Only the FO (hlgh-bandW|dth, plan_ned speech_) andF1 (spontan_qu% optimize the expansion step itself. Again, the purpose of N-
speech) conitlons of that set were included, with F1 generally giv-

- ) . X . ram lattice expansion is to allow higher-order N-gram probabilities
ing considerably larger lattices. A single backward reduction pags P g g P

. . 0 ) )
rgc_iuced lattice sizes b)bau_t 50%, as shown in Table 1. R.ec_og 2The reverse conversion constructs a node for each unigue pair of FSA
nition from the reduced lattices gave a very small (not statisticallyoge and incoming traiteon symbol. This poduces best results if the FSA
significant) reduction in word error, which might be a result of fewefs deterministic. Conversions back and forth between the two representa-
search errors. tions are designed to be exact inverses.




to be assigned to the word transitions so as to increase accuracy
in subsequent recognition passes. The discussion here is based on
trigram lattices for simplicity, but the ideas generalize to higher- b

order N-grams. e

f
To place trigram probabilities on the lattice transitions, we must cre-

ate a unique two-word context for each trting. For example, in (a) Bigram lattice before expansion given atrigram LM

Figure 1, a node labeleand its transitiongc, d) and(c, €) are du- where only (a.c d) hessan explicit trigrem protetility

plicated to guarantee the uniqueness of the trigram contexts before c c

placing probabilitiesp(-|ac) and p(-|bc) on the transitions. When @ d

a central node with label has two predecessor nodes labeled with a d
the same wora, only one additional node and its corresponding b
outgoing transitions must be duplicated. The conventional trigram b
expansion algorithm [5, 6] performs this node duplication exhaus-
tively, as follows.

f c e

f

Conventional Iattice expansion algorithm' (b) Conventional trigram expansion. (c) Compact trigram expansion.

¢ For each node of the lattice, in topological order:

— For each predecessor nadsf n: Figure 2: Compact expansion of a bigram lattice to a trigram lattice.

* for each successor nod®f n:
- if a node j with word(n) was already cre-
ated for trigram contextword(i),word(n))
andword(k), connect nodéto node;j.

the transition from the new node to thed node. The weight of
the (a,c) transition is copied as well. After the explicit trigrams
are processed, the outgoing transitions from the origimadde are
weighted with their corresponding bigram probities p(d|c) and
- otherwise, create nodg and label it with  p(e|c). Furthermore, bigram backoff weights(ac), bo(bc), and
word(n), connect nodé to nodej and node o f¢) are multiplied onto the corrpsnding incoming trarions
j to nodek, put p(word(k)|word(i)word(n))  of the originalc node.
on transition( j,k)

— remove node and all its incoming and outgoing transi- compact lattice expansion algorithm: Let weight(i, j) be the
tions aggregate probability on transiti@n j).
For each noda in the lattice, in topological order:
While this algorithm correctly implements trigram probabilities in
the lattice, it does so at a considerable increase in lattice size. On our
Hub4 development set, the number of lattice transitions increased — for each successor noll®f n:
about 10-fold using the conventional approach.

o for each predecessor nodef n:

« if there is an explicit trigram probability for

The conventional expansion algorithm ensures unique trigram histo- (word(i), word(n), word(k)),

ries by copying a node labeled if it appears inat least onerigram - if a node j with word(n) was already cre-

Wi_1Wiwi41. However, one copy for each predecessar; in the ated for trigram contexfword(i), word(n))

lattice is created, even if those pezessors do not have a trigram in andword(k), connectnodéto node;

the LM. By contrast, the new expansion algorithm only creates one - otherwise, create nodg, label it with

copy ofw; for eachexplicit trigram w_1wiw; 41 in the LM. word(n), connect nodei to node j and
node j to nodek, and setweight(j,k) =

The key is to factor backed-off trigram probabilities p(word(k)|word(i)word(n))

p(wit1lwi—1w;) into the backoff weightbo(wi_iw;) and the

. . ise, mark ition($, .k
bigram probabilityp(wit1|w;), and to multiply the backoff weight * Otherwise, mark transitions, n) and(n, k)

onto the weight of thewi_1,wj) transition, while keeping the — if transition (i, n) is not marked remove it
bigram probability on thew;,wi;1) transition. Thus, no node _ otherwise set weighti,n) = weighti,n) *
duplication is required for those trigrams. Since backoff weights bo(word(ij word(n)) ' '

and probabilities combine multiplicatively, the total score along a
path fromw;_j throughw; to wi;.1 amounts to the correct trigram o for each end successor ndklef n:

robability p(wi 4 1|wi—1w;). _
P Y P(Wh11W-1h) — if transition(n,k) is not marked remove it
Figure 2 iIIust_ra_ltes_ the compacF _expansion idga given that there is — otherwise, seeighin, k) = p(word(k)|word(n))
only one explicit trigram probabilityp(d|ac). Notice that only one
node labeled and its incoming transition from treenode and out- ¢ if no incoming transitions are marked, remove nadmnd all

going transition to thel node are createdp(d|ac) is placed on its incoming and outgoing transitions.



|_Algorithm | FO [ F1 | Total | the more efficient expansion, lattice errors were reduced to 3.15%
Conventional 123107 | 488738| 319985 and 7.38%, respectively. At least with our present recognition sys-
Compact 29113 | 76396 | 54573 tem, however, we did not observe lower final 1-best error rates.
Conventional/minimized 59559 | 207535| 139238
Compactminimized | 59957 | 216387| 144188 5. CONCLUSION

We have described two algorithms to keep word lattices small with-

Table 2: Trigram lattice sizes in terms of average number of transioUt sacrificing lattice or word regnition error rates. A bigram
tions. lattice reduction algorithm merges latticedes that can be shown

to be locally redundant, halving the size oftiees obtained from

our recognizer. Experimentally, the algorithm seems to be supe-

A potential problem for this approach is that even for explicit tri- . ¢ it i h based FSA determinizati d
gram probabilities, the lattice retains a path using the backoff trafor o_ant_a erlrzwa;\r/‘e approac dasel ond ? _ermlnllza;t!on an
sitions, which might have a higher weight than the correct trigrarrr1nm'mIza lon. FUrthermore, we geveloped a new trigram fatice ex-

transition and therefore be preferred during search. For examp%ansmn algorithm that reduces trigram lattice sizes by a factor of 6
in Figure 2b, there are two paths labeledc, d), and during search and expansion time by a factor of 10. Recognition with the resulting

. 0 . . .
the incorrect lower path will be choserifd]ac) < p(d|c) «bo(ac). lattices is 40% faster as compared to conventional trigram lattices.

The proper solution is to preprocess the trigram LM to prune all triPue to reduced resource demands, we were able to significantly

gram probabilities that are lower than the copmsding (improper)
backoff estimate, and to renormalize the LM. Experiments on Hub4
data showed that in practice, this eliminates only a small fraction of
trigrams, not significantly changing the power of the LM or the final ;
recognition results. Weofuind that leaving the improper paths in the
lattice also did not have a significant effect onagnitionaccuracy,
compared to using the pruned LM.

LATTICE EXPANSION EXPERIMENTS 3

2.

4.

Experiments were conducted with both the conventional and the
compact trigram expansion algorithms. The trigram LM used for
expansion was SRI's 1996 Hub4 48,000-word trigram LM de-,
scribed in [10]. Using bigram lattices from the Hub4 FO and F1
development test sets as the inputid@s to the two algorithms,

we found that the compact expansion algorithm was 10 times faster
than the conventional algorithm. Furthermore, as shown in Tas,
ble 2, the size of the compact trigram lattices is only about one
sixth that of the conventional ones. We also applied the weighted
determinization/minimization algorithms described in [3] and im- 6.
plemented by [2] to both conventionally and compactly expanded
trigram lattices. As shown in the last two rows of Table 2, deter-
minization/minimization reduced the size of conventional lattices7.
by 56%. However, determinization and minimization more than
doubled the size of compact trigranttiees. This is likely a result

of the backoff structure, which introduces non-determinism into the
lattice (see Figure 2c). 8.

Recognition experiments were carried out using then(
deterministic) conventional and compact trigram lattices with SRI's9.
1997 Hub4 unadapted acoustic models [7]. Word redgmer-
ror rates showed no difference in performance between the conven-
tional and the compact trigram lattices. However, recognition spedd.
with the compact lattices was 40% faster than with the conventional
lattices.

11.
Given the same time and memory limitations, the more compact
lattice expansion step allowed us to relax the pruning during initial
lattice generation, resulting in a decreased lattice error rates. Pre-
viously, lattices had been limited to 3.31% word error for the FO
condition and 9.98% for the Floadition. Using less pruning and

lower the lattice error rate using the new algorithm.
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