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ABSTRACT

Over the past few years, the “sums-of-products” approach
has emerged as one of the most promising avenues to ac-
count for contextual influences on phoneme duration. This
approach is generally applied after log-transforming the
durations. This paper presents empirical and theoretical
evidence which suggests that this transformation is not op-
timal. A promising alternative solution is proposed, based
on a root sinusoidal function. Preliminary experimental re-
sults obtained on over 50,000 phonemes in varied prosodic
contexts show that this transformation reduces the unex-
plained deviations in the data by 32.2%.

1. INTRODUCTION

In natural speech, durations of phonetic segments strongly
depend on contextual factors such as the identities of sur-
rounding segments, stress, accent, and phrase boundaries
(cf., e.g., [1]). For synthetic speech to sound natural, these
duration patterns must be closely reproduced. Two ap-
proaches have been followed for duration prediction: (i)
general classification techniques, such as decision trees and
neural networks [2], and (ii) “sums-of-products” (SoP) meth-
ods, based on multiple linear regression in either linear or
log domain [3].

These two approaches differ in two key aspects: the amount
of linguistic knowledge required, and the behavior of the
model in situations not encountered during training. Gen-
eral classification techniques are largely data-driven and
unsupervised, and therefore require a large amount of train-
ing data. Furthermore, they cope with never-seen circum-
stances by using coarser representations, thus sacrificing
resolution. In contrast, SoP models are supervised on the
basis of linguistic knowledge, which makes them more ro-
bust to missing data. In addition, they predict durations
for unseen contexts through interpolation, by making use
of the ordered structure uncovered during analysis of the
data [1]. Given the typical size of training corpora cur-
rently available, the second approach tends to outperform
the first one, particularly when cross-corpus evaluation is
considered [4].

When SoP models are applied in the linear domain, they

lead to various derivatives of the additive model originally
proposed by Klatt [5]. When they are applied in the log do-
main, they lead to multiplicative models such as described
in [1]. The evidence appears to indicate that the latter
perform better than the former. Two reasons why this
might be the case are: (i) the distributions tend to be less
skewed after the log transformation; and (ii) the fractional
approach underlying multiplicative models is better suited
for small durations. There is, however, no evidence that
the log transformation is optimal. Rather than eliminat-
ing skewness in the data, it tends to merely reduce it (and
reverse its sign). And while it is true that contexts such as
phrase-final position are likely to lengthen long phonemes
more than short phonemes, there is no a priori reason for
all factors to be strictly multiplicative across all durations.

This paper presents empirical and theoretical evidence sup-
porting an alternative transformation which results in bet-
ter models. The next section motivates a closer look at the
assumptions underlying the SoP approach. Section 3 ex-
amines the theoretical basis for an alternative formalism.
In Section 4, we propose a new transformation based on
a sinusoidal function. Finally, Section 5 reports on a se-
ries of experimental results illustrating the benefits of the
proposed framework.

2. EMPIRICAL MOTIVATION

This work arose from evaluating the SoP approach on a
large corpus collected at Apple Computer in the summer
of 1996. This corpus systematically represents the known
contextual factors influencing prosodic phonetic structure
for a canonical speaking style. It contains all possible syl-
lable types as defined by a comprehensive grammar based
on phoneme classes. There is at least one instance of each
syllable with each of no pitch accent, L+H*, and H*, in
each of prenuclear, intermediate-phrase-nuclear, or phrase-
final nuclear position [6]. Furthermore, there is at least
one instance of each accented syllable separated from the
end of its word, the following accent, and the end of the
phrase, by each of 0, 1, 2, 3, and 4 intervening syllables.
In addition, all of the instances of every syllable type sys-
tematically samples from all the phonemes in each class of
each of the syllable component. The corpus was spoken



Fig. 1. Effects of Adding More Regression Parameters.

by a linguistically-trained speaker, with close monitoring
of the intended intonation.

In the experiments, the phonemic alphabet had size 40,
and the portion of the corpus considered comprised 50,797
observations. Thus, on the average, there were about 1270
observations per phoneme. Phoneme boundaries were au-
tomatically aligned using a speaker-dependent version of
the Apple large vocabulary continuous speech recognition
system. The SoP approach was implemented via weighted
least-squares multiple regression, as implemented in the
Splus v3.2 software package. The standard log transforma-
tion was used. Across the entire dataset, this model left
15.2% of the standard deviation in the durations unexpl-
ained.! This overall fit is comparable to prior results re-
ported in the literature.

Close analysis of the residuals showed that they were not
spread evenly throughout the data range. Specifically, long
durations tended to be underestimated and short durations
overestimated. This is of course a common modeling phe-
nomenon, which typically becomes less and less severe as
the models acquire more independent variables represent-
ing higher-order interactions between contexts.

Fig. 1 illustrates this error reduction for a subset of the
above data (consisting of the four unvoiced fricatives). The
predicted and observed values have each been sorted in as-
cending order, and the two distributions plotted against
each other. If the predictions were perfect, all the points
would lie on the grey “y = z” line. Instead, the grey filled
circles represent the predictions from a simple SoP model
with about 20 parameters, which accounts for 32.6% of the
total standard deviation. The black hollow circles repre-
sent a more complex model with about 200 parameters,
which accounts for 87.2% of the deviation. The additional
parameters allow the model to more closely predict the

n this paper we report the fit on the complete corpus, rather
than setting aside a test subset. In our experiments we have
found the same patterns as those reported here, when we eval-
uate the models with a train/test subdivision of the data.

more extreme observations in the data. However, the over-
all shape of the plot suggests that the overestimation of
short durations and underestimation of long durations is
a structural pattern over a wide range of regression equa-
tions. Moreover, this observation is consistent across the
entire dataset.

There are two possible (non mutually exclusive) approaches
to reducing these erroneous duration predictions. The tra-
ditional approach, as illustrated in Fig. 1, is to add more
independent variables to the regression equation. However,
each parameter added to the more complex equation repre-
sents only one particular higher-order interaction between
factors, and thus only one specific subset of the data. As
more interaction terms are added, they are trained on fewer
and fewer points and account for smaller and smaller par-
ticular subsets of the outliers. At the extreme, this raises
the issue of parameter reliability, as well as generalization
to new combinations of context.

The other approach is to first make sure the raw durations
are transformed appropriately, given the structural nature
of the pattern observed in the residuals. This led us to
re-examine the underlying assumptions of the SoP model.

3. THEORETICAL FRAMEWORK

The origin of the SoP approach can be traced to the “ax-
iomatic measurement” theorem [7], as applied to duration
data. This theorem states that under certain conditions
the duration function D can be described by the general-
ized additive model, given by:

N M;
F[D(f1, f2,... fn)] = E Iai,jfi(j), (1)
where f; (i = 1,...,N) represents the ith contextual fac-

tor influencing D, M; is the number of values that f; can
take, a; ; is the factor scale corresponding to the jth value
of factor f;, denoted by fi(j), and F is an unknown mono-
tonically increasing transformation. Thus, F(z) = z cor-
responds to the additive case and F(x) = log(z) corre-
sponds to the multiplicative case. As mentioned before,
F(z) = log(z) is normally used.

The conditions mentioned above have to do with factor
independence. Specifically, one can construct a function
F and a set of factor scales a;,; such that (1) holds only
if the factors f;, 7 = 1,..., N, exhibit all possible forms
of independence, i.e., only if joint independence holds for
all subsets of 2,3,..., N factors. Clearly, this is not go-
ing to be the case for duration data. For example, accent
and phrasal position interact in their influence on vowel
duration, i.e., these factors are not independent. The jus-
tification for applying (1) anyway is, generally, that such
interactions tend to be well-behaved, in that their effects
are amplificatory, rather than reversed or otherwise per-
muted [1]. The “regular patterns of amplificatory inter-
actions,” in van Santen’s words, make it “quite plausible
that some sums-of-products model will fit the [appropri-
ately transformed] durations” [1] (emphasis ours).



Fig. 2. Transformation Shape for Various a.

Violation of the joint independence assumption, however,
may substantially complicate the search for the transfor-
mation F. In particular, the optimal transformation F
may no longer be strictly increasing, opening up the possi-
bility of inflection points, or even discontinuities. In other
words, it is worth revisiting the likely behavior of the trans-
formation in the face of amplificatory interactions.

4. NEW TRANSFORMATION

For simplicity, in the generalized additive model (1) we
use a common set of factors across 15 classes of phonemes.
This common set includes well known factors such as ac-
cent, preceding and following phoneme identity, and others
reported in the literature. The data of Fig. 1 suggests that
the interactions mentioned above are only amplificatory for
long durations. When durations are short, the interactions
seem to exert the opposite influence.

As a result, we opted to look for a transformation F' with
opposite properties at the two ends of the range. In the
first approximation, this entails at least one inflection point
in F. This observation led us to consider the sinusoidal

function:
F(z) = {sin [g = i )a] }2+a | @)

where A and B denote the minimum and maximum dura-
tions observed in the training data, and the parameters «
and 3 control the shape of the transformation. Specifically,
these parameters control (i) the position of the inflection
point within the range of durations observed, and (ii) the
amount of shrinking/expansion which happens on either
side.

Fig. 2 and 3 depict the shape of the function (2) for var-
ious values of o and B. It can be seen from Fig. 2 that
with values @ < 1, the curve moves to the left, which
leads to an expansion of the shorter durations and a com-
pression of the longer durations. On the other hand, with
values @ > 1 the curve moves to the right, which means

the shorter durations shrink and the longer durations be-
come more separated. Furthermore, the two parameters
can be independently adjusted to also control the slope of
the function at the inflection point. As Fig. 3 illustrates,
this slope can be reduced by using a relatively large value
of a and a relatively small value of (3, or increased by using
the opposite combination.

From our data, it also seemed that the residuals are dispro-
portionately greater in long durations than in short dura-
tions (cf. Fig. 1). Thus, relatively speaking, the transfor-
mation should impact long durations more than short du-
rations. It it important to note, however, that the optimal
values of the parameters a and 3 depend on the phoneme
(or class) identity, since the shape of the function is tied to
the duration distributions observed in the training data.

In the experiments described below, the procedure we fol-
lowed to generate these parameters was to iteratively ad-
just a and ( for each phoneme class, using the goodness of
fit of the subsequent regression as the criterion. It would
be straightforward to automate this procedure using, e.g.,
standard gradient descent algorithms. As it turns out, we
have found that the values a = 0.8 and 8 = 0 are adequate
for a wide range of phonemes/classes. For this reason, we
call the resulting transformation the root sinusoidal trans-
formation.

5. EXPERIMENTAL RESULTS

The baseline result (15.2% unexplained) was obtained us-
ing the standard multiplicative model, as described in Sec-
tion 2. The same independent variables were then re-
gressed against the root sinusoidal transformation of the
raw durations. In both cases, the SoP coefficients (af-
ter the appropriate transformation) were estimated using
weighted least squares as implemented in the Splus v3.2
software package.

Applying the root sinusoidal transformation left only 10.3%
of the standard deviation unexplained, which corresponds

Fig. 3. ¢



Fig. 4. Performance Comparison.

to a reduction of 32.2% in the proportion not accounted
for by the model.

The above experiments were then repeated with a range
of different numbers of equation parameters, representing
different choices of factors and interaction terms, to see if
the result was somehow linked to the particular regression
model selected. Fig. 4 reports the outcome, in terms of the
percentage of standard deviation explained as a function of
the total number of parameters in the modeling (including
the parameters required for the transformation). It can
be seen that the root sinusoidal transformation (filled tri-
angles) is consistently superior to the log transformation
(hollow circles) across the entire range of parameters con-
sidered.

A consequence of Fig. 4 is that the root sinusoidal trans-
formation provides for a more parsimonious representation
of the regular patterns in the observed data. Specifically,
for a given level of performance, the root sinusoidal ap-
proach allows the underlying SoP expression to comprise
approximately half the number of parameters. For exam-
ple, to explain 85% of the standard deviation in the dura-
tions would require less than 2500 parameters with a root
sinusoidal transformation, but slightly more than 4500 pa-
rameters with a log transformation.

6. CONCLUSIONS

This paper has presented both theoretical and preliminary
empirical evidence for the use of a root sinusoidal trans-
formation in the well-known sums-of-products approach to
duration modeling. Compared to the standard log trans-
formation, this new transformation reduced the propor-
tion of the standard deviation unexplained by more than
30%. Alternatively, for a given level of performance, the
new transformation roughly halved the required number of
equation parameters.

This improved duration model has implications for the
voice generation in a speech synthesizer, because of the

greater quantity of both shorter and longer phonemes that
it is able to generate. Short phonemes are difficult to syn-
thesize because they are typically associated with under-
shoot of articulatory targets. Mere warping (in the time
domain) of units that sound appropriate with longer du-
rations is likely to result in unnaturally sudden spectral
transitions. Similarly, the longer durations produced by
this model will require careful voice processing to avoid
unnaturally salient steady states. Consequently, we believe
that as duration models improve, there will be greater need
for articulatory approaches to voice generation.

In future work, the parameters of the transformation will
be automatically optimized, and the different transforma-
tions will be compared by calculating the unexplained de-
viations in the raw data rather than in the transformed
domain.
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