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ABSTRACT

The goal of multi-span language modeling is to integrate
the various constraints, both local and global, that are
present in the language. In this paper, local constraints
are captured via the usual n-gram approach, while global
constraints are taken into account through the use of latent
semantic analysis. An integrative formulation is derived for
the combination of these two paradigms, resulting in an en-
tirely data-driven, multi-span framework for large vocab-
ulary speech recognition. Because of the inherent comple-
mentarity in the two types of constraints, the performance
of the integrated language model compares favorably with
the corresponding m-gram performance. Both perplexity
and average word error rate figures are reported and dis-
cussed.

1. INTRODUCTION

Stochastic language modeling plays a central role in large
vocabulary speech recognition, where it is typically used to
constrain the acoustic analysis, guide the search through
various (partial) text hypotheses, and/or contribute to the
determination of the final transcription. Over the past
decade, the n-gram paradigm [1] has emerged as the for-
malism of choice for a wide range of domains. Concerns
regarding parameter reliability, however, restrict current
implementations to low values of n (cf., e.g., [2]), which in
turn imposes an artificially local horizon to the language
model. As a result, n-grams are inherently unable to cap-
ture large-span relationships in the language.

Taking such global constraints into account has tradition-
ally involved a paradigm shift toward parsing and rule-
based grammars, such as are routinely and successfully em-
ployed in small vocabulary recognition applications. This
approach solves the locality problem, since it typically op-
erates at the level of an entire sentence. Unfortunately, it is
not (yet) practical for large vocabulary recognition. This
has motivated further investigation into alternative ways
to extract suitable long distance information, other than
resorting to a formal parsing mechanism.

One such attempt was based on the concept of word trig-
gers [3]. Unfortunately, trigger pair selection is a com-
plex issue: different pairs display markedly different be-

havior, which limits the potential of low frequency triggers
[4]. Still, self-triggers seem to be particularly powerful and
robust [3], which underscores the desirability of exploiting
correlations between the current word and features of the
document history.

This observation led the author to explore the use of latent
semantic analysis (LSA) for such purpose [5]—[7]. In some
respect, the LSA paradigm can be viewed as an extension of
the word trigger concept, where a more systematic frame-
work is used to handle the trigger pair selection. In [5],
LSA was used for word clustering, and in [6], for language
modeling. In both cases, it was found to be suitable to
capture some of the global constraints present in the lan-
guage. In fact, multi-span language models, constructed
by embedding LSA into the standard n-gram formulation,
were shown to result in a substantial reduction in perplex-

ity [7].

In this paper, we are primarily interested in the behavior of
such multi-span language modeling in actual recognition.
The paper is organized as follows. In the next section,
we review the salient properties of LSA-based statistical
language modeling. In Section 3, we discuss the integra-
tion of this framework with conventional n-gram modeling.
Section 4 addresses some of the implementation issues in-
volved in using the resulting multi-span models for large
vocabulary recognition. Finally, Section 5 illustrates some
of the benefits associated with multi-span modeling on a
subset of the Wall Street Journal task.

2. LSA LANGUAGE MODELING

Let V, |V| = M, be some vocabulary of interest and 7
a training text corpus, comprising N articles (documents)
from a variety of sources. (Note that this implies that the
training data is tagged at the document level, i.e., there is
a way to identify article boundaries. This is the case, for
example, with the ARPA North American Business (NAB)
News corpus [8].) Typically, M and N are on the order of
ten thousand and hundred thousand, respectively; 7 might
comprise a hundred million words or so.

The LSA approach defines a mapping between the sets
V, T and a vector space S, whereby each word w; in V
is represented by a vector u; in S and each document d;



in T is represented by a vector v; in §. For the sake of
brevity, we refer the reader to [9] for further details on the
mechanics of LSA and LSA language modeling, and just
briefly summarize here.

The first step is the construction of a matrix (W) of co-
occurences between words and documents. In marked con-
trast with n-gram modeling, word order is ignored: the
matrix W is accumulated from the available training data
by simply keeping track of which word is found in what
document. Among other possibilities, a suitable expres-

sion for the (4,5)*™® element of W is given by (cf. [5]):
Ci,j
i = gi ——, 1
Wij =g n; (1)

where g¢; is the normalized entropy complement of w; in
the corpus T, c¢;; is the number of times w; occurs in
document dj, and n; is the total number of words present
in document d;.

The second step is to compute the singular value decom-
position (SVD) of W as:

WaWw=USV", (2)

where U is the (M X R) matrix of left singular vectors u;
(1 <i< M), Sisthe (R x R) diagonal matrix of singular
values, V' is the (IV x R) matrix of right singular vectors v;
(1<j<N),R<K M(L N) is the order of the decomposi-
tion, and T denotes matrix transposition. The left singular
vectors represent the words in the given vocabulary, and
the right singular vectors represent the documents in the
given corpus. Thus, the space S sought is the one spanned
by U and V. An important property of this space is that
two words whose representations are “close” (in some suit-
able metric) tend to appear in the same kind of documents,
whether or not they actually occur within identical word
contexts in those documents. Conversely, two documents
whose representations are “close” tend to convey the same
semantic meaning, whether or not they contain the same
word constructs. Thus, we can expect that the respective
representations of words and documents that are semanti-
cally linked would also be “close” in the LSA space S.

The third step is to leverage this property for language
modeling purposes. Let w, denote the word about to be
predicted, and Hy—; the admissible history (context) for
this particular word, i.e., the current document up to word
wg—1, denoted by Jqfl. Then the associated LSA language
model probability is given by:

Pr (wq|Hq—1:8) =Pr (wq|Jq—1): (3)

where the conditioning on S reflects the fact that the prob-
ability depends on the particular vector space arising from
the SVD representation, and Jq_l has a representation in
the space S given by:

b1 =d2 US @

through a straightforward extension of (2). This vector
representation for Jq_l is adequate under some conditions
on the general patterns of the domain considered; see [9]
for a complete discussion.

In (3), Pr(wq|d,—1) reflects the “relevance” of word w,
to the admissible history, also referred to as a pseudo-
document [9]. As such, it will be highest for words whose
meaning aligns most closely with the semantic fabric of
dg_1 (i.e., relevant “content” words), and lowest for words
which do not convey any particular information about this
fabric (e.g., “function” words like the). Since content words
tend to be rare and function words tend to be frequent, this
will translate into a relatively high perplexity value. Thus,
the model (3), by itself, will likely exhibit a rather weak
predictive power. Hence the need to integrate it as part of
a multi-span formalism.

3. INTEGRATION WITH N-GRAMS

The LSA framework provides a way to handle some of the
global constraints in the language. To obtain a multi-span
language model, it remains to combine them with local con-
straints, such as provided by the n-gram paradigm. Ob-
viously, the goal of the resulting integrated approach is to
leverage the benefits of both.

The integration can occur in a number of ways, such as
straightforward interpolation, or within the maximum en-
tropy framework [4]. In the following, we develop an alter-
native formulation for the combination of the n-gram and
LSA paradigms. The end result, in effect, is a modified
n-gram language model incorporating large-span semantic
information.

To achieve this goal, we need to compute:

Pr (wy|Hy 1) = Pr (wy| H)

q—1

HD)), (5)

where the history H,—_1 now comprises an n-gram com-
ponent (H(gﬁ)l = Wq—1Wq—2 . . . Wg—n+1) as well as an LSA
component (Héljl =d, 1). This expression can be rewrit-
ten as:

l n
Pr (wq, Hé_)l Hé—)l)

l )
> Pr(w, HY |HD)
w; EV

Pr (wq|Hq—l) =

where the summation in the denominator extends over all
words in V. Expanding and re-arranging, the numerator
of (6) is seen to be:

l n
Pr (wq, Hézl |H¢§7)1)
n l n
= Pr (wy|H™,) Pr (H |wy, H))

= Pr (wg|wg—1wg—2 ... Wg—nt1)

- Pr(dg—1|wgwg—1wq—2 ... wg—ny1). (7)

Now we make the assumption that the probability of the
document history given the current word is not affected
by the immediate context preceding it. This reflects the
fact that, for a given word, different syntactic constructs
(immediate context) can be used to carry the same mean-
ing (document history). This is obviously reasonable for
content words, and probably does not matter very much
for function words. As a result, the integrated probability



becomes:
Pr (wq|Hg—1) =
Pr (wq|wg—1wqg—2 ... wg—n+1) Pr(dg—1|wg)

Z Pr (w;|wg—1wg—2 . .. Wg—n+1) Pr (dg—1|w;)
w; EV

(8)

Note that, if Pr(d,—1|wq) is viewed as a prior probability
on the current document history, then (8) simply trans-
lates the classical Bayesian estimation of the m-gram (lo-
cal) probability using a prior distribution obtained from
(global) LSA.

4. IMPLEMENTATION ISSUES

There are two ways to take advantage of multi-span mod-
eling for large vocabulary speech recognition. One is to
rescore previously produced N-best lists using the inte-
grated models. (This was the scenario implicitly assumed
in [7] and [9].) The other is to use the multi-span models
directly in the search itself. The latter is preferable, since
it allows incremental pruning based on the best knowledge
source available. Compared to N-best rescoring, however,
using multi-span modeling directly in the search entails a
much higher computational cost.

In a typical large vocabulary search performed on an aver-
age sentence of length, say, 10 seconds, several hundred to
several thousand unique word contexts could be active at
any given frame. Thus, the computational load is poten-
tially several orders of magnitude greater than for simple
post-search rescoring. Omne concern, in particular, is the
calculation of each pseudo-document vector representation
in (4), which requires O(M R) floating point operations.

Fortunately, we can exploit the sequential nature of pseudo-
documents to reduce this computational cost. Clearly, as
each word context is expanded, the document context re-
mains largely unchanged, with only the most recent candi-
date word added. Assume further that the training cor-
pus 7 is large enough, so that the normalized entropy
complement does not change appreciably with the addi-
tion of each pseudo-document. Then it is possible to ex-
press the new pseudo-document vector directly in terms
of the old pseudo-document vector, instead of each time
re-computing the entire mapping from scratch.

To see that, consider Jq, and assume, without loss of gen-
erality, that word w; is observed at time ¢q. Then, from (1),
we will have for 1 <k < M, k #i:

Wk,qg = Wk,q—1, )

while, for k = i:

. 1 —1 .
Cig-1+1 _ng Wig1 + 9 (10)

Wi,q = Gi
Nq Nq Nq

Hence, with the shorthand notation vi,, = gi/n,, we can
express d, as:

i -1 -
dq:nq dq*l + [O’thO]T’ (11)

which is turn implies, from (4):

__ mng—1
Vg =

1~1q71 + Yi,q Ui S_l . (12)

Nq

It is easily verified that (12) requires only O(R) float-
ing point operations. Thus, we can update the pseudo-
document vector directly in the LSA space at a fraction of
the cost previously required to map the sparse representa-
tion to the space S.

Note that the other potential bottleneck, the computation
of the integrated probability (8), can also be alleviated
through appropriate caching of the LSA probabilities. The
above fast pseudo-document update therefore allows multi-
span language modeling to be exploited in early stages of
the search, if desired.

5. RECOGNITION RESULTS

As in [9], we have trained the LSA framework on the WSJ0
part of the NAB News corpus. This was convenient for
comparison purposes since conventional n-gram language
models are readily available, trained on exactly the same
data [8]. The training text corpus 7 was composed of
about N = 87,000 documents spanning the years 1987 to
1989, comprising approximately 42 million words. The vo-
cabulary V was constructed by taking the 20,000 most fre-
quent words of the NAB News corpus, augmented by some
words from an earlier release of the Wall Street Journal
corpus, for a total of M = 23,000 words.

We performed the singular value decomposition of the ma-
trix of co-occurrences between words and documents using
the single vector Lanczos method [10]. Over the course of
this decomposition, we experimented with different num-
bers of singular values retained, and found that R = 125
seemed to achieve an adequate balance between reconstruc-
tion error (as measured by Frobenius norm differences) and
noise suppression (as measured by trace ratios). Using the
resulting vector space § of dimension 125, we constructed
the LSA model (3) and combined it with the standard bi-
gram, as in (8).

The resulting multi-span language model, dubbed bi-LSA
model, was then used in lieu of the standard WSJ0 bi-
gram model in a series of speaker-independent, continuous
speech recognition experiments. These experiments were
conducted on a subset of the Wall Street Journal 20,000
word-vocabulary task. The acoustic training corpus con-
sisted of 7,200 sentences of data uttered by 84 different
native speakers of English (WSJO SI-84). The test corpus
consisted of 496 sentences uttered by 12 additional native
speakers of English.

It is important to note that the task chosen represents a
severe test of the LSA component implemented above. By
design, no more than 3 or 4 consecutive sentences are re-
lated to a single article. As a result, the test corpus com-
prises 140 distinct document fragments, which means that
each speaker speaks, on the average, about 12 different
“documents.” This prevents the multi-span model from



Reduction Reduction
Speaker in in Word

Perplexity Error Rate
001 22.8 % 8.4 %
002 28.5 % 215 %
00a 30.6 % 17.5 %
00b 274 % 10.1 %
00c 33.6 % 10.0 %
00d 26.2 % 17.3 %
0of 33.3 % 11.5 %
203 35.3 % 16.1 %
400 15.4 % 14.8 %
430 19.7 % 19.3 %
431 20.0 % 12.2 %
432 24.7 % 7.8 %
Overall 24.7 % 13.7 %

Table 1. Performance Improvement Using Bi-LSA
Language Modeling.

building a very accurate pseudo-document representation,
since the context effectively changes every 60 words or so.
(In situations like these, it is beneficial to implement a
mechanism to consistently forget the context, to avoid rely-
ing on an obsolete representation; details will be presented
in [11].)

The performance achieved using the bi-LSA language model
were compared to that achieved using the baseline bigram,
as measured by both test data perplexity and actual word
error rate. Table 1 summarizes the results obtained, in
terms of perplexity reduction (first column) and word error
rate reduction (second column). It can be seen that overall
we observed a reduction in perplexity of about 25%, and a
reduction in average error rate on the order of 15%.

As usual, the reduction in average error rate is less than
the corresponding reduction in perplexity, due to the in-
fluence of the acoustic component in actual recognition,
and the resulting “ripple effect” of each recognition error.
Note that in the case of n-LSA language modeling, this
effect can be expected to be more pronounced than in the
standard n-gram case. This is because recognition errors
are potentially able to affect the LSA context well into the
future, through the estimation of a flawed representation
of the pseudo-document in the LSA space. This lingering
behavior, which can obviously degrade the effectiveness of
the LSA component, is an unfortunate by-product of large-
span modeling. Clearly, the more accurate the recognition
system, the less problematic this unsupervised context con-
struction becomes.

6. CONCLUSION

We have described a data-driven framework for the inte-
gration of the various constraints, both local and global,
that are present in the language. This approach exploits
the complementarity between the n-gram formalism, which

inherently relies on syntactically-oriented, short-span re-
lationships, and latent semantic analysis, which tends to
capture semantically oriented, large-span relationships be-
tween words. This synergy can be harnessed through an
integrative formulation which combines the two paradigms.

The resulting multi-span language model was shown to out-
perform the associated standard n-gram on a subset of the
Wall Street Journal speaker-independent, 20,000-word vo-
cabulary, continuous speech task. Specifically, we observed
a reduction in perplexity of about 25%, and a reduction in
average error rate of about 15%.
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