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ABSTRACT

The goal of multi-span language modeling is to integrate

the various constraints, both local and global, that are

present in the language. In this paper, local constraints

are captured via the usual n-gram approach, while global

constraints are taken into account through the use of latent

semantic analysis. An integrative formulation is derived for

the combination of these two paradigms, resulting in an en-

tirely data-driven, multi-span framework for large vocab-

ulary speech recognition. Because of the inherent comple-

mentarity in the two types of constraints, the performance

of the integrated language model compares favorably with

the corresponding n-gram performance. Both perplexity

and average word error rate �gures are reported and dis-

cussed.

1. INTRODUCTION

Stochastic language modeling plays a central role in large

vocabulary speech recognition, where it is typically used to

constrain the acoustic analysis, guide the search through

various (partial) text hypotheses, and/or contribute to the

determination of the �nal transcription. Over the past

decade, the n-gram paradigm [1] has emerged as the for-

malism of choice for a wide range of domains. Concerns

regarding parameter reliability, however, restrict current

implementations to low values of n (cf., e.g., [2]), which in

turn imposes an arti�cially local horizon to the language

model. As a result, n-grams are inherently unable to cap-

ture large-span relationships in the language.

Taking such global constraints into account has tradition-

ally involved a paradigm shift toward parsing and rule-

based grammars, such as are routinely and successfully em-

ployed in small vocabulary recognition applications. This

approach solves the locality problem, since it typically op-

erates at the level of an entire sentence. Unfortunately, it is

not (yet) practical for large vocabulary recognition. This

has motivated further investigation into alternative ways

to extract suitable long distance information, other than

resorting to a formal parsing mechanism.

One such attempt was based on the concept of word trig-

gers [3]. Unfortunately, trigger pair selection is a com-

plex issue: di�erent pairs display markedly di�erent be-

havior, which limits the potential of low frequency triggers

[4]. Still, self-triggers seem to be particularly powerful and

robust [3], which underscores the desirability of exploiting

correlations between the current word and features of the

document history.

This observation led the author to explore the use of latent

semantic analysis (LSA) for such purpose [5] { [7]. In some

respect, the LSA paradigm can be viewed as an extension of

the word trigger concept, where a more systematic frame-

work is used to handle the trigger pair selection. In [5],

LSA was used for word clustering, and in [6], for language

modeling. In both cases, it was found to be suitable to

capture some of the global constraints present in the lan-

guage. In fact, multi-span language models, constructed

by embedding LSA into the standard n-gram formulation,

were shown to result in a substantial reduction in perplex-

ity [7].

In this paper, we are primarily interested in the behavior of

such multi-span language modeling in actual recognition.

The paper is organized as follows. In the next section,

we review the salient properties of LSA-based statistical

language modeling. In Section 3, we discuss the integra-

tion of this framework with conventional n-gram modeling.

Section 4 addresses some of the implementation issues in-

volved in using the resulting multi-span models for large

vocabulary recognition. Finally, Section 5 illustrates some

of the bene�ts associated with multi-span modeling on a

subset of the Wall Street Journal task.

2. LSA LANGUAGE MODELING

Let V, jVj = M , be some vocabulary of interest and T

a training text corpus, comprising N articles (documents)

from a variety of sources. (Note that this implies that the

training data is tagged at the document level, i.e., there is

a way to identify article boundaries. This is the case, for

example, with the ARPA North American Business (NAB)

News corpus [8].) Typically, M and N are on the order of

ten thousand and hundred thousand, respectively; T might

comprise a hundred million words or so.

The LSA approach de�nes a mapping between the sets

V, T and a vector space S, whereby each word wi in V

is represented by a vector ui in S and each document dj



in T is represented by a vector vj in S. For the sake of

brevity, we refer the reader to [9] for further details on the

mechanics of LSA and LSA language modeling, and just

brie
y summarize here.

The �rst step is the construction of a matrix (W ) of co-

occurences between words and documents. In marked con-

trast with n-gram modeling, word order is ignored: the

matrix W is accumulated from the available training data

by simply keeping track of which word is found in what

document. Among other possibilities, a suitable expres-

sion for the (i; j)th element of W is given by (cf. [5]):

wi;j = gi
ci;j

nj
; (1)

where gi is the normalized entropy complement of wi in

the corpus T , ci;j is the number of times wi occurs in

document dj , and nj is the total number of words present

in document dj .

The second step is to compute the singular value decom-

position (SVD) of W as:

W � Ŵ = U S V
T
; (2)

where U is the (M � R) matrix of left singular vectors ui
(1 � i �M), S is the (R�R) diagonal matrix of singular

values, V is the (N�R) matrix of right singular vectors vj
(1 � j � N), R�M(� N) is the order of the decomposi-

tion, and T denotes matrix transposition. The left singular

vectors represent the words in the given vocabulary, and

the right singular vectors represent the documents in the

given corpus. Thus, the space S sought is the one spanned

by U and V . An important property of this space is that

two words whose representations are \close" (in some suit-

able metric) tend to appear in the same kind of documents,

whether or not they actually occur within identical word

contexts in those documents. Conversely, two documents

whose representations are \close" tend to convey the same

semantic meaning, whether or not they contain the same

word constructs. Thus, we can expect that the respective

representations of words and documents that are semanti-

cally linked would also be \close" in the LSA space S.

The third step is to leverage this property for language

modeling purposes. Let wq denote the word about to be

predicted, and Hq�1 the admissible history (context) for

this particular word, i.e., the current document up to word

wq�1, denoted by ~dq�1. Then the associated LSA language

model probability is given by:

Pr (wqjHq�1;S) = Pr (wqj ~dq�1) ; (3)

where the conditioning on S re
ects the fact that the prob-

ability depends on the particular vector space arising from

the SVD representation, and ~dq�1 has a representation in

the space S given by:

~vq�1 = ~d
T
q�1 U S

�1
; (4)

through a straightforward extension of (2). This vector

representation for ~dq�1 is adequate under some conditions

on the general patterns of the domain considered; see [9]

for a complete discussion.

In (3), Pr (wq j ~dq�1) re
ects the \relevance" of word wq

to the admissible history, also referred to as a pseudo-

document [9]. As such, it will be highest for words whose

meaning aligns most closely with the semantic fabric of
~dq�1 (i.e., relevant \content" words), and lowest for words

which do not convey any particular information about this

fabric (e.g., \function" words like the). Since content words

tend to be rare and function words tend to be frequent, this

will translate into a relatively high perplexity value. Thus,

the model (3), by itself, will likely exhibit a rather weak

predictive power. Hence the need to integrate it as part of

a multi-span formalism.

3. INTEGRATION WITH N-GRAMS

The LSA framework provides a way to handle some of the

global constraints in the language. To obtain a multi-span

language model, it remains to combine them with local con-

straints, such as provided by the n-gram paradigm. Ob-

viously, the goal of the resulting integrated approach is to

leverage the bene�ts of both.

The integration can occur in a number of ways, such as

straightforward interpolation, or within the maximum en-

tropy framework [4]. In the following, we develop an alter-

native formulation for the combination of the n-gram and

LSA paradigms. The end result, in e�ect, is a modi�ed

n-gram language model incorporating large-span semantic

information.

To achieve this goal, we need to compute:

Pr (wqjHq�1) = Pr (wqjH
(n)
q�1; H

(l)
q�1) ; (5)

where the history Hq�1 now comprises an n-gram com-

ponent (H
(n)

q�1 = wq�1wq�2 : : : wq�n+1) as well as an LSA

component (H
(l)

q�1 =
~dq�1). This expression can be rewrit-

ten as:

Pr (wqjHq�1) =
Pr (wq; H

(l)
q�1jH

(n)
q�1)X

wi2V

Pr (wi; H
(l)

q�1jH
(n)

q�1)
; (6)

where the summation in the denominator extends over all

words in V. Expanding and re-arranging, the numerator

of (6) is seen to be:

Pr (wq; H
(l)

q�1jH
(n)

q�1)

= Pr (wqjH
(n)

q�1) Pr (H
(l)

q�1jwq ; H
(n)

q�1)

= Pr (wqjwq�1wq�2 : : : wq�n+1)

� Pr ( ~dq�1jwqwq�1wq�2 : : : wq�n+1) : (7)

Now we make the assumption that the probability of the

document history given the current word is not a�ected

by the immediate context preceding it. This re
ects the

fact that, for a given word, di�erent syntactic constructs

(immediate context) can be used to carry the same mean-

ing (document history). This is obviously reasonable for

content words, and probably does not matter very much

for function words. As a result, the integrated probability



becomes:

Pr (wq jHq�1) =

Pr (wq jwq�1wq�2 : : : wq�n+1) Pr ( ~dq�1jwq)X

wi2V

Pr (wijwq�1wq�2 : : : wq�n+1)Pr ( ~dq�1jwi)
: (8)

Note that, if Pr ( ~dq�1jwq) is viewed as a prior probability

on the current document history, then (8) simply trans-

lates the classical Bayesian estimation of the n-gram (lo-

cal) probability using a prior distribution obtained from

(global) LSA.

4. IMPLEMENTATION ISSUES

There are two ways to take advantage of multi-span mod-

eling for large vocabulary speech recognition. One is to

rescore previously produced N-best lists using the inte-

grated models. (This was the scenario implicitly assumed

in [7] and [9].) The other is to use the multi-span models

directly in the search itself. The latter is preferable, since

it allows incremental pruning based on the best knowledge

source available. Compared to N-best rescoring, however,

using multi-span modeling directly in the search entails a

much higher computational cost.

In a typical large vocabulary search performed on an aver-

age sentence of length, say, 10 seconds, several hundred to

several thousand unique word contexts could be active at

any given frame. Thus, the computational load is poten-

tially several orders of magnitude greater than for simple

post-search rescoring. One concern, in particular, is the

calculation of each pseudo-document vector representation

in (4), which requires O(MR) 
oating point operations.

Fortunately, we can exploit the sequential nature of pseudo-

documents to reduce this computational cost. Clearly, as

each word context is expanded, the document context re-

mains largely unchanged, with only the most recent candi-

date word added. Assume further that the training cor-

pus T is large enough, so that the normalized entropy

complement does not change appreciably with the addi-

tion of each pseudo-document. Then it is possible to ex-

press the new pseudo-document vector directly in terms

of the old pseudo-document vector, instead of each time

re-computing the entire mapping from scratch.

To see that, consider ~dq, and assume, without loss of gen-

erality, that word wi is observed at time q. Then, from (1),

we will have for 1 � k �M , k 6= i:

wk;q = wk;q�1 ; (9)

while, for k = i:

wi;q = gi
ci;q�1 + 1

nq
=

nq � 1

nq
wi;q�1 +

gi

nq
: (10)

Hence, with the shorthand notation 
i;q = gi=nq , we can

express ~dq as:

~dq =
nq � 1

nq
~dq�1 + [0 : : : 
i;q : : : 0]

T
; (11)

which is turn implies, from (4):

~vq =
nq � 1

nq
~vq�1 + 
i;q ui S

�1
: (12)

It is easily veri�ed that (12) requires only O(R) 
oat-

ing point operations. Thus, we can update the pseudo-

document vector directly in the LSA space at a fraction of

the cost previously required to map the sparse representa-

tion to the space S.

Note that the other potential bottleneck, the computation

of the integrated probability (8), can also be alleviated

through appropriate caching of the LSA probabilities. The

above fast pseudo-document update therefore allows multi-

span language modeling to be exploited in early stages of

the search, if desired.

5. RECOGNITION RESULTS

As in [9], we have trained the LSA framework on the WSJ0

part of the NAB News corpus. This was convenient for

comparison purposes since conventional n-gram language

models are readily available, trained on exactly the same

data [8]. The training text corpus T was composed of

about N = 87; 000 documents spanning the years 1987 to

1989, comprising approximately 42 million words. The vo-

cabulary V was constructed by taking the 20,000 most fre-

quent words of the NAB News corpus, augmented by some

words from an earlier release of the Wall Street Journal

corpus, for a total of M = 23; 000 words.

We performed the singular value decomposition of the ma-

trix of co-occurrences between words and documents using

the single vector Lanczos method [10]. Over the course of

this decomposition, we experimented with di�erent num-

bers of singular values retained, and found that R = 125

seemed to achieve an adequate balance between reconstruc-

tion error (as measured by Frobenius norm di�erences) and

noise suppression (as measured by trace ratios). Using the

resulting vector space S of dimension 125, we constructed

the LSA model (3) and combined it with the standard bi-

gram, as in (8).

The resulting multi-span language model, dubbed bi-LSA

model, was then used in lieu of the standard WSJ0 bi-

gram model in a series of speaker-independent, continuous

speech recognition experiments. These experiments were

conducted on a subset of the Wall Street Journal 20,000

word-vocabulary task. The acoustic training corpus con-

sisted of 7,200 sentences of data uttered by 84 di�erent

native speakers of English (WSJ0 SI-84). The test corpus

consisted of 496 sentences uttered by 12 additional native

speakers of English.

It is important to note that the task chosen represents a

severe test of the LSA component implemented above. By

design, no more than 3 or 4 consecutive sentences are re-

lated to a single article. As a result, the test corpus com-

prises 140 distinct document fragments, which means that

each speaker speaks, on the average, about 12 di�erent

\documents." This prevents the multi-span model from



Reduction Reduction
Speaker in in Word

Perplexity Error Rate

001 22.8 % 8.4 %
002 28.5 % 21.5 %
00a 30.6 % 17.5 %
00b 27.4 % 10.1 %
00c 33.6 % 10.0 %
00d 26.2 % 17.3 %
00f 33.3 % 11.5 %
203 35.3 % 16.1 %
400 15.4 % 14.8 %
430 19.7 % 19.3 %
431 20.0 % 12.2 %
432 24.7 % 7.8 %

Overall 24.7 % 13.7 %

Table 1. Performance Improvement Using Bi-LSA
Language Modeling.

building a very accurate pseudo-document representation,

since the context e�ectively changes every 60 words or so.

(In situations like these, it is bene�cial to implement a

mechanism to consistently forget the context, to avoid rely-

ing on an obsolete representation; details will be presented

in [11].)

The performance achieved using the bi-LSA language model

were compared to that achieved using the baseline bigram,

as measured by both test data perplexity and actual word

error rate. Table 1 summarizes the results obtained, in

terms of perplexity reduction (�rst column) and word error

rate reduction (second column). It can be seen that overall

we observed a reduction in perplexity of about 25%, and a

reduction in average error rate on the order of 15%.

As usual, the reduction in average error rate is less than

the corresponding reduction in perplexity, due to the in-


uence of the acoustic component in actual recognition,

and the resulting \ripple e�ect" of each recognition error.

Note that in the case of n-LSA language modeling, this

e�ect can be expected to be more pronounced than in the

standard n-gram case. This is because recognition errors

are potentially able to a�ect the LSA context well into the

future, through the estimation of a 
awed representation

of the pseudo-document in the LSA space. This lingering

behavior, which can obviously degrade the e�ectiveness of

the LSA component, is an unfortunate by-product of large-

span modeling. Clearly, the more accurate the recognition

system, the less problematic this unsupervised context con-

struction becomes.

6. CONCLUSION

We have described a data-driven framework for the inte-

gration of the various constraints, both local and global,

that are present in the language. This approach exploits

the complementarity between the n-gram formalism, which

inherently relies on syntactically-oriented, short-span re-

lationships, and latent semantic analysis, which tends to

capture semantically oriented, large-span relationships be-

tween words. This synergy can be harnessed through an

integrative formulation which combines the two paradigms.

The resulting multi-span language model was shown to out-

perform the associated standard n-gram on a subset of the

Wall Street Journal speaker-independent, 20,000-word vo-

cabulary, continuous speech task. Speci�cally, we observed

a reduction in perplexity of about 25%, and a reduction in

average error rate of about 15%.
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