
A novel iterative signal enhancement algorithm

for noise reduction in speech

Simon Doclo, Ioannis Dologlou, Marc Moonen

Department of Electrical Engineering - ESAT
Katholieke Universiteit Leuven

Kardinaal Mercierlaan 94, 3001 Heverlee, Belgium
Tel. +32/16/321899, Fax +32/16/321970

fsimon.doclo,ioannis.dologlou,marc.mooneng@esat.kuleuven.ac.be

Abstract

This paper presents an iterative signal enhancement al-

gorithm for noise reduction in speech. The algorithm is

based on a truncated singular value decomposition (SVD)

procedure, which has already been used as a tool for signal

enhancement [1][2]. Compared to the classical algorithms,

the novel algorithm gives rise to comparable improvements

in signal-to-noise ratio (SNR). Moreover the algorithm has

an improved frequency selectivity for �ltering out the noise

and performs better with respect to the higher formants

of the speech. It can also be extended easily to multiple

channels.

1 INTRODUCTION

In many speech communication applications, like audio-

conferencing and hands-free mobile telephony, the

recorded and transmitted speech signals contain a con-

siderable amount of acoustic background noise. This is

mainly due to the fact that the speaker is located at a

certain distance from the recording microphones. Back-

ground noise can stem from stationary noise sources, but

most of the time the background noise is non-stationary

and broadband, with a spectral density depending upon

the environment. Background noise causes a signal degra-

dation which can lead to total unintelligibility and which

decreases the performance of speech coding and speech

recognition systems.

Some approaches for noise reduction are based on the sin-

gular value decomposition (SVD) [1][2]. The idea is to

consider the signal as a vector in an N -dimensional space

and to separate the noisy signal into a clean signal and a

noise signal, lying in orthogonal subspaces. This is done

by constructing a Hankel matrix containing the given sig-

nal, reducing this matrix to a lower rank and restoring the

Hankel structure (see section 2). A FIR �lter interpreta-

tion of this approach has been given which provides some

insight into the frequency domain properties [3]. The clas-

sical algorithm, which consists of repeating this approach

a number of times, is covered in section 3.

In section 4 the iterative signal enhancement (ISE) algo-

rithm is presented, which consists of two loops. In the

inner loop an enhanced signal is computed based on the

largest singular value (most energetic spectral region) and

its residual signal. The outer loop consists of the repeti-

tion of the inner loop for a number of times, depending of

the noise level. In section 5 some simulations and results

are discussed, comparing the SNR improvement and the

frequency behaviour of both algorithms.

2 TRUNCATED SVD PROCEDURE

2.1 Outline of procedure
Consider the clean speech signal x[k] and the noise sig-

nal n[k] (both unknown). If we assume the noise to be

additive, we can write

y[k] = x[k] + n[k]; (1)

where y[k] corresponds to the recorded noisy signal. From

the vector y = [y[0]; y[1]; : : : ; y[N � 1]]T we can construct

the Hankel matrix Y 2 RL�M ,

Y =

2
6664

y[0] y[1] : : : y[M � 1]

y[1] y[2] : : : y[M ]
...

...
...

y[L� 1] y[L] : : : y[N � 1]

3
7775 ; (2)

with L �M and M + L = N + 1.

If we assume that the clean signal x[k] consists of a sum of p

complex exponentials, then the Hankel matrix containing

the clean signal is rank-de�cient and has rank p � M .

This is a model that is often attributed to clean speech

[4]. If n[k] consists of broadband noise, the matrix Y will

in general not be rank-de�cient and will have rank M .

From the SVD of Y it is possible to construct a least-

squares estimate of the Hankel matrix containing the clean

signal. When we set the M � p smallest singular values,

corresponding to the noise, to zero and we only retain the

p largest singular values, corresponding to the signal, we

are able to construct the matrix Yp,

Yp =
�
U1 U2

� � �1 0

0 0

��
VT
1

VT
2

�
= U1�1V

T
1 ;

(3)

which is the best rank-p approximation of the original ma-

trix Y.

In general, the matrix Yp does not have a Hankel struc-

ture. A simple procedure for restoring the Hankel struc-

ture is to average along the anti-diagonals of the matrix



and to construct a Hankel matrix bX,

bX =

2
6664

x̂[0] x̂[1] : : : x̂[M � 1]

x̂[1] x̂[2] : : : x̂[M ]
...

...
...

x̂[L� 1] x̂[L] : : : x̂[N � 1]

3
7775 (4)

x̂[k] =
1

� � �+ 1

�X
i=�

Yp(k � i+ 2; i) (5)

� = max(1; k � L+ 2); � = min(M;k + 1) (6)

Because of the averaging, the matrix bX in general does

not have rank p any more. Still, because bX is closer

to Yp than the original matrix Y, the signal x̂ =

[x̂[0]; x̂[1]; : : : ; x̂[N � 1]]T will be more compatible with the

p-th order model than the signal y. It has been shown that

for speech applications this simple procedure is indeed able

to reduce additive noise [5].

2.2 FIR �lter representation
In [3][6] a complete FIR �lter representation of this algo-

rithm in terms of the SVD of Y is described. The signal

x̂[k], extracted from bX, essentially consists of the sum of p

zero-phase �ltered versions of the original signal y[k]. The

zero-phase �lters used are constructed from the right sin-

gular vectors vi of the matrixY. The whole procedure can

be considered a signal-dependent �ltering operation of the

signal y[k] with a length-(2M -1) FIR �lter. Figure 1 gives

a schematic overview of this FIR �lter representation. In

this �gure J is the reverse identity matrix. Multiplication

with a length-N sequence d[k] is necessary because of the

di�erent lengths of the anti-diagonals,

d[k] :

�
1;
1

2
;
1

3
; : : : ;

1

M
;
1

M
; : : : ;

1

M
; : : : ;

1

3
;
1

2
; 1

�
: (7)

Because the SVD can be considered a decomposition based

on an energy criterion, the zero-phase �ltered versions

corresponding to the large singular values correspond to

frequency components with large amplitudes. For speech

this means that the zero-phase �lters corresponding to the

large singular values capture the formants of the speech,

while the other zero-phase �ltered versions mainly contain

noise. Although this procedure provides some noise re-

duction, the obtained signal enhancement is generally not

su�cient. However this procedure will be used as a tool

in the algorithms described in sections 3 and 4.

3 CLASSICAL ALGORITHM

The classical algorithm for noise reduction repeats the pre-

vious procedure a number of times, using the output of one

stage as the input to the following stage. This algorithm

is described in table 1.

If we keep the order M and the rank p �xed, we obtain an

`enhanced' signal x̂[k] that is exactly represented by a p-th

order model [7]. However, these iterations turn out not to

be very good in terms of the resulting speech quality. If the

order p is too low, the speech will sound low-pass �ltered
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Figure 1: FIR �lter representation

and the high frequency components of the speech will be

lost. If the order p is higher, annoying `musical tones' will

be introduced. Therefore we propose an alternative pro-

cedure, referred to as the Iterative Signal Enhancement

(ISE) algorithm.

1. Initialisation : y0[k] = y[k]

2. for i = 0 : : : l � 1,

� construct Hankel matrix Yi from yi[k]

� compute SVD of Yi

� truncate Yi to rank p

� average and extract output signal x̂i[k]

� yi+1[k] = x̂i[k]

end

3. Enhanced signal : x̂[k] = yl[k]

Table 1: Classical algorithm

4 ITERATIVE SIGNAL

ENHANCEMENT ALGORITHM

4.1 Algorithm
The algorithm consists of two loops. The inner loop is

an iterative procedure which computes an enhanced signal

x̂[k] from a noisy input signal y[k]. Since the enhanced sig-

nal coming out of the inner loop still contains some noise,

the outer loop consists of repeating the inner loop a num-

ber of times, depending on the noise level.

The iterative procedure (inner loop) proceeds as follows :

from the noisy input signal y[k] the rank-1 signal decompo-

sition s[k] is calculated by truncating the Hankel matrix

to rank 1 and averaging along its anti-diagonals. In the

frequency domain this signal decomposition will cover the

most energetic spectral band of the input signal. Then the

residual signal r[k] is calculated by subtracting the signal

decomposition s[k] from the input signal y[k] and the pro-

cedure is started over again using the residual signal as

input signal for the next iteration. The enhanced signal

x̂[k] is obtained by summing the signal decompositions s[k]

over all iterations. We stop iterating when the residual sig-

nal r[k] contains `only noise'-components.

The inner loop is represented in �gure 2, keeping in mind

that the superscript i represents the number of times the

inner loop has been repeated. The complete ISE algorithm

is described in table 2. The ISE algorithm can be viewed

as a �ltering operation of the signal y[k] with a length-

(2p(M -1)+1) FIR �lter.



The advantage of the ISE algorithm is that it has a better

frequency selectivity for �ltering out the noise than the

classical algorithm. The ISE algorithm performs system-

atically better with respect to the higher formants of the

speech (see section 5). This algorithm can also be imple-

mented e�ciently because it requires only the computation

of the largest singular value and its corresponding singular

vector [8].
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Figure 2: ISE algorithm (inner loop)

1. Initialisation : y00 [k] = y[k]

2. for i = 0 : : : l� 1, (outer loop)

3. � for j = 0 : : : p� 1, (inner loop)

� construct Hankel matrix Yi
j from yij [k]

� compute rank-1 decomposition sij [k]

� compute residual rij [k] = yij [k]� sij [k]

� yij+1[k] = rij [k]

end

� enhanced signal : x̂i[k] =
Pp�1

n=0
sin[k]

� yi+1
0

[k] = x̂i[k]

end

4. Enhanced signal : x̂[k] = yl0[k]

Table 2: ISE algorithm

4.2 Extension to multiple channels
The SVD-based algorithm can be extended to multiple

channels, by considering block-Hankel matrices instead of

Hankel matrices [9]. Consider the K-dimensional vector

m[k] = [m1[k]; m2[k]; : : : ;mK [k]]
T , consisting of the K

microphone signals at time k.

The ISE algorithm can be extended to multiple channels

by replacing the Hankel matrix Y by the following block-

Hankel matrix H 2 RL�KM

H = [H1H2 : : :HK ] (8)

Hi =

2
6664

mi[0] mi[1] : : : mi[M � 1]

mi[1] mi[2] : : : mi[M ]
...

...
...

mi[L� 1] mi[L] : : : mi[N � 1]

3
7775 : (9)

This way the correlation between the di�erent channels is

exploited, assuming that the noise is less correlated than

the speech.

5 SIMULATIONS AND RESULTS

Several experiments have been carried out, where we pro-

cessed a speech signal, corrupted by noise, with both al-

gorithms. Figure 3 shows the maximum attainable SNR-

improvement for the inner loop of both algorithms, when

the speech signal is corrupted by white noise (SNR ranging

from 0 to 30 dB). The SNR improvement is de�ned as

SNR(x; x̂) = 10 log
10

 
kxk

2

2

kx� x̂k
2

2

!
; (10)

where x = [x[0]; x[1]; : : : ; x[N � 1]]T is the clean speech

signal vector and x̂ = [x̂[0]; x̂[1]; : : : ; x̂[N � 1]]T is the en-

hanced signal vector. As shown in the �gure, the SNR

improvements for both algorithms are comparable.

However, the frequency behaviour of the ISE algorithm is

better than the classical algorithm. We have processed a

speech signal (8 kHz, frames of 1000 samples), corrupted

with white noise (SNR = 10 dB). Figure 4 shows the fre-

quency spectrum of one frame of the clean and the noisy

speech signal.

We have processed the noisy signal with both algorithms.

Figure 5 shows the frequency spectrum of the enhanced

signal for both algorithms. As can be seen, the ISE al-

gorithm has a better frequency selectivity for �ltering out

the noise than the classical algorithm. The ISE algorithm

performs systematically better with respect to the higher

formants of the speech, which are clearly preserved.

Figure 6 shows the frequency spectrum of the residual sig-

nal (noisy signal minus enhanced signal) for both algo-

rithms. Ideally, this spectrum should be 
at, since we

have added white noise to the clean speech signal. As

can be seen, the spectrum obtained with the ISE algo-

rithm resembles much more a white noise spectrum than

the spectrum obtained with the classical algorithm. The

residual signal for the classical algorithm mainly contains
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Figure 3: SNR improvement for both algorithms

(dashed : classical algorithm, solid : ISE algorithm)
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Figure 4: Frequency spectrum of the clean and the noisy

speech signal (top: clean signal, bottom: noisy signal)
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Figure 5: Frequency spectrum of the enhanced signal

(top: classical algorithm, bottom: ISE algorithm)

high frequency components, so that executing the classi-

cal algorithm can be considered merely a low-pass �ltering

of the noisy speech signal, whereas the residual signal for

the ISE algorithm also contains components in the low

frequency region.
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Figure 6: Frequency spectrum of the residual signal

(top: classical algorithm, bottom: ISE algorithm)
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