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1. ABSTRACT derstanding processes. The rationale behind a train-
ing procedure that couples the syntactic and seman-
Stochastic language models for speech reitmyn tic features is an accurate modeling of the word se-
have traditionally been designed and evaluated in or-quences needed to lbecognized for understanding
der to optimize word accuracy. In this work, we presentin this work we will describe and evaluate a novel
a novel framework for training stochastic language framework for training language models accounting
models by optimizing two different criteria appropri- for the constraints assigned by the syntactic and se-
ate for speech recogion and language understand- mantic models in a large vocabulary spoken language
ing. First, the language entropy asaliencemeasure  task. In the next two sections we describe the base-
are used for learning theelevantspoken language line stochastic language models for speech recogni-
features (phrases). Secondly, a novel algorithm fortion and understanding. In the third section we pro-
training stochastic finite state machines is presentedpose an iterative algorithm for combining language
which incorporates the acquired phrase structure intofeatures (phrases) pertaining to the two different mod-
a single stochastic language model. Thirdly, we showels, into a single stochastic language model. For this
the benefit of our novel framework with an end-to- purpose, we provide a training algorithm for stochas-
end evaluation of a large vocabulary spoken languageic finite state machines so that the constraints deliv-
system for call routing. ered by the language features are combined together.
We tested our algorithms for language modeling within
theHow May | Help Yoicall-routing task [3]. In the
2. INTRODUCTION last section, we report on the end-to-end evaluation of
these training algorithms for théow May | Help You

Traditionally, the design of stochastic language mod- large vocabulary spoken language system.

els for data-driven speech understanding systems is

partitioned into two sub-problems. In other words, 3. LANGUAGE MODELING FOR SPEECH

two language models are independently trained as op- RECOGNITION

timize the speech recoiion and understanding part

of the system. Within this paradigm, the language The classic approach to training language models for
model for speech recogion is meant to constrain  speech recogtion is the wordz:-gram paradigm, wherein
the search space of all possible word sequefites a word sequenc&®’ = wy,...,wys probability is

and to assign a high (low) probability to those se- computed by means of conditional probabilities whose
quence$V (not) allowed by a given information source context length is::

In a similar way, the language model for language un-

derstanding is trained for mapping text into a seman- PW) = Hp(wi|wi—n+17 o wier) (1)

tic representation of the system task. In both cases, ‘

the training algorithms daot account for the inter-  One of the major disadvantages of this approach is
dependencies between the speech reitiogrand un-  the insufficient statistics for estimating models with



largen (n > 5). In [1] we have shown that language number of machine actions € C [5] L. In our pre-
models can be trained in order to capture long span-vious work, we have introduced the notiorsaflience
ning dependencies between words by acquiring lexi-for evaluating this input-output{ — ¢;) associa-

cal features (phrases) from training word sequencestion in a quantitative manner. Given the set of ma-
The selection of phrases from a corpus is designedchine actions;, and the phrasephr;, its salience

so that the computation of high ordergrams lets  is computed as the Kulbach-Leibler distance between
us reduce the entropy of the training and test corpusthe P(sphr;|c;) distribution and the prior distribu-
Moreover, by selecting the set of phrases, the numbettion P(c;). Thesaliencemeasure lets us acquire the
of parameters will not grow exponentially as in the meaningfufeatures (phrases) from a training corpus
case of the wordi-gram. As a result the probability usingthe automatic algorithm described in [3]. Hence,

of a word sequencl’ will be computed as: we can exploit the set falientfragments to extract
the most likely association betweé&h and all possi-
P(W) = [[ P(ephrilephri—py1, ..., ephri_y) ble machine actions;. In the case of thélow May

2) | Help Youcall-routing task [1], [3] we haveb5 call-

, . . types (e.g. CALLING CARD, COLLECT, etc.) and
h hriisth h h - ) .
wherecphr; is the generic phrase acquired by the pro a set of3 K salient fragments. To illustrate how the

cess of entropy minimization over the training set and . . .
its length ranges from 1 t&, (N is a parameter of |nput-9utput association works we consider the sen-
the learning algorithm, [1]). Moreover, the algorithm tence:

for acquiring phrases automatically provides best
word bracketing instance for computing the word se-
guence probability. For example, in the sentence (
..X denotes a digit sequence)

yes I'd like to make an international
call and put it on my credit card my
phone credit card please

By using a peak of fragment classifier we get the fol-

yes | want | like to make a call to to o o .
lowing interpretation in terms cfalientfragments:

tucson arizona the new area code is X
X X the and the number is X X X X X X

X yes I'd like to [make an international

calll] [and put] [it on my credit] [card]
my phone [credit card please]

the probability” (1) will be decomposed according CALLING CARD [it on my credif] 1.0

to the following bracketing:

where the detecteshlientfragmentsphr; are brack-
eted and the second line gives the most likely call-
type and its associatedsalient fragment
(argmaz., sphr, P(cj|sphr;)) along with its posteri-

ori probability (naz., syn-, P(c;|sphr;)) [3]. We tested
this understanding model on unconstrained text input
for a relatively small number of finite machine actions
and proved its effectiveness on speech recognizer out-
puts as well [1], [3].

[yes | want] | [like to] [make a call
to] to [tucson arizona] the new [area
code] [is x x x] the and [the number
is] [Xx X X X X X X]

For each context length, phrasen-gram language
models have a number of parameters similar to the
word n-gram. In particular, in [1] we have shown
that the phrase-grams (see equation 2) always out-
perform the wordi-grams and its model size is com-
parable to the word-grams. 5. LANGUAGE MODELING FOR SPEECH
RECOGNITION AND UNDERSTANDING

4. LANGUAGE MODELING FOR LANGUAGE

UNDERSTANDING The training of a stochastic language model for speech

recognitionand understanding is directly related to

Without loss in generality in this work, we will view the combination of the set of featuresr; andsphr;)

language understanding for unconstrained language :Here we will consider only text input, however the underly-
input as the mapping from input tekt’ to a finite  ing model applies to a generic input




acquired through the algorithms described above. Motdddeninstances oft” being generated by the stochas-
over, such a language model should be delivered as dic models corresponding th and7;. For example,
single stochastic finite state machine so that the prob-n the simple case oV = wy, ws, w3, w4 and be-
ability (W) willcomputed in a straightforward way ing¢; (i = 1,2, 3) the only parses allowed? (V) is

for use in the large vocabulary speech recognizer [2].calculated as:

There are three main steps in training a stochastic fi- (W) 3)
nite state machine combining the classes of language

featuresphr; € ephr andsphr; € sphr (see fig. 1): = P(wi)(aP(wz|w) P(wswz) P(wa|ws) +

P P P
e Given the setephr;, sphr; and the training P (wzwshwr) Plwglwaws) + 5 Plwswswoln))

set7 (with lexicon V), build two bracketed wherex, 3 andy are estimated via the smoothed Max-
training sets/. and;. imum Likelihood estimates proposed in [2].

The third step in training a stochastic finite state ma-
chine A,. (see fig 1) is accomplished by using the
Variable Ngram Stochastic Automaton (VNSA) learn-
ing algorithm [2]. By feeding the three sefs7.

e Train the stochastic finite state machine that rec-2nd 7 into the self-organizing automata algorithm

e Compute the probability?(1¥) according to
the different bracketing derived Bz and 7,
for the word sequencié’.

ognizes all possible word sequences we finally get a stochastic finite state machine that
W = wi,...,wy (W € V*) and deliver the ~ €Stimates’(W) (W e V) with the phrase:-gram
probability P (V). model as in equation 2. It is worth noting that the

non-deterministic automata learning algorithm in [2]
Both algorithms described in the two previous sec- |et us take advantage of the phrase-based probability
tions give for each sentend® in the training sef’  computation while the first term in the sum in equa-
the bracketing instance corresponding to the featuretion 3 guarantees a non-zero probability estimate for

setsephr andsphr. Thus, foreachV = w;,...,wyr  eachW e V*.
in 7 we have:
T €00 wy, wy, ws, wy, . .. 6. APPLICATION TO
A LARGE VOCABULARY SPOKEN
Te &o0 wy, [wo, wa), wy, . .. LANGUAGE SYSTEM

Ts &t wy, [w2, w3, wa), . .. We have applied these algorithms for language mod-

eling to theHow May | Help Youcall-routing task [3].

_ In this telecommunications application, we consider
Ephr phrases ,
people's responses to the open-ended promidoef
Parsing May | help You?for the purpose of mapping user's
7 utterances intd5 call-types (e.g. CALLING CARD,
. by Ase COLLECT, etc.). Thus, we are aiming at extracting a
e 0] Teemeer] gutomaa relatively small number of semantic actions from the
et Training Learning
responses of a very large number of users who are not
” trained to the system's capabilities and limitations.
Parsing The speech understanding system is composed of a

large vocabulary speech recognizer (V=3.6K words)
and a language understanding module [3]. We ac-
quired entropy-based and salience-based phrases on
Figure 1: Block Diagram for the phrase-based 8K training sentence set and tested our language mod-
stochastic finite state machine els on 1K held-out set. The setphr andsphr con-
tain respectively- 1K and 3K phrases artd% of the
Then, the computation of the probability(1V) phrases irephr are shared witlsphr. Examples of
can be decomposed according to the three pdises phrasescephr, esphr ande ephr(sphr are respec-
& and&s. In other words, we considép andé&s as tively, | was wondering if you couldollect call to my



andmake a collect call The phrase length fagphr 0.84
(sphr) varies inthe range— 16 (1—4). We have eval-

uated the combined stochastic language maddel 0.81

to test its effectiveness for improving the understand- S
. . 0.78

ing rate of our system. As expected the perplexity of

A, is similar to the language model using entropy- ‘g 0.75

based phrases [1]. In fact, the phraspebr were £ ///

selected as part of the language model training pro-fj 0.72
cedure with the goal of improving the understanding =

rate. In table 1 we show the word accuracy results for &1 0.69 ~ vord
the baseline system (using a word bigram language /i//
model), the entropy-based-only language model and ~ 0.66 T—

the combined modeh,.. In interpreting the user's - ephr
responses we used a peak-of-fragment classifier tha 063 T~
would search for aalientfragmentssphr; in the de- 06 ~~ ephr & sphr

coded utteranc#’. The figures of merit of this eval-
uation are the probability of false rejection, where a 013 018 025 04 D63
call is falsely rejected and the probability of correct
classification where the correct call-types are associ-
ated tol¥. In fig 2 the entropy-based and salience-
based language model shows the best understandin
performance with 25% error rate reduction with re-
spect to the baseline system and 15% compared to the

entropy-based-only language model for speech recoglanguage models to a large vocabulary spoken lan-
nition (for a false rejection rate @b %). guage system and demonstrated the effectiveness of

our language model training algorithm by reducing
the understanding error rate B§% compared to the

False Rejection Rate

Figure 2: Understanding performances for the word-
8ased, ephr-based ang. language model

unit type VNSA order baseline system.
2 3
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