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ABSTRACT

This paper presents a novel algorithm which generates

three-dimensional face point trajectories for a given speech

�le with or without its text. The proposed algorithm �rst

employs an o�-line training phase. In this phase, recorded

face point trajectories along with their speech data and

phonetic labels are used to generate phonetic codebooks.

These codebooks consist of both acoustic and visual fea-

tures. Acoustics are represented by Line spectral frequen-

cies (LSF), and face points are represented with their prin-

cipal components (PC). During the synthesis stage, speech

input is rated in terms of its similarity to the codebook

entries. Based on the similarity, each codebook entry is

assigned a weighting coe�cient. If the phonetic informa-

tion about the test speech is available, this is utilized in

restricting the codebook search to only several codebook

entries which are visually closest to the current phoneme

(a visual phoneme similarity matrix is generated for this

purpose). Then these weights are used to synthesize the

principal components of the face point trajectory. The per-

formance of the algorithm is tested on held-out data, and

the synthesized face point trajectories showed a correlation

of 0.73 with true face point trajectories.

1. INTRODUCTION

There has been a signi�cant interest in the area of face

synthesis recently. This topic has numerous applications

including �lm dubbing, computer-based language instruc-

tion, cartoon character animation, multimedia entertain-

ment, etc. There is a large e�ort in developing autonomous

software agents that can communicate with humans using

speech, facial expression, gestures, and intonation. Katashi

and Akikazu [6] employed animated facial expressions in

a spoken dialogue system. Other researchers [3, 4]) used

various forms of visual agents animating gestures, intona-

tion, and head movements. Lip synching is another ap-

plication of wide interest. Video Rewrite system [5] uses

existing footage to create automatically new video of a per-

son mouthing words that she did not speak in the original

footage.

In this study, we propose a new algorithm to synthesize

three dimensional face point trajectories corresponding to

a novel utterance. The general algorithm does not require

any text input. However, the performance of the algorithm

signi�cantly improves if phonetic information is known a

priori. Therefore, throughout this paper the algorithm will

be described assuming phonetic information is available. It

will be described in the end how the proposed algorithm

can be to the case where phonetic information is not avail-

able. The general outline of the paper is as follows. Section

2 describes the proposed face point trajectory synthesis al-

gorithm. In this section, the formulation and automatic

generation of a novel visual phoneme similarity matrix is

described as well. Section 3 presents the simulations and

performance evaluation. Finally Section 4 discusses the re-

sults and future directions.

2. ALGORITHM DESCRIPTION

The face synthesis algorithm proposed in this paper is an

extension of the STASC voice transformation algorithm

which is described in [1]. The 
owchart of the proposed

face synthesis algorithm is shown in Figure 1. The algo-

rithm requires two on-line inputs: i) a speech �le, ii) its

corresponding phoneme sequence. It also requires two ad-

ditional inputs which are generated prior to face synthesis

during the training stage: i) an audio-visual codebook, ii)

a visual phoneme similarity matrix. First, we will explain

how the codebook, and the visual phoneme similarity ma-

trix are generated.

2.1. Audio-Visual Codebook Generation

For the data collection, �rst synchronized speech and face

point trajectories must be recorded from a subject. For this

study the point trajectories were recorded using a multi-

camera triangulation system yielding 60 samples/sec at a

spatial resolution of .254 mm in X, Y, and Z. In the pilot

study reported here, 54 points on and around the face were

recorded while a single subject uttered approximately 300

TIMIT sentences selected to provide the richest possible

phonetic coverage. Unfortunately, tongue movement was

not included in the dataset. Speech and EGG (Glottal En-

terprises) were also digitized via a DAT recorder at 48kHz,

then later digitally down-sampled to 16kHz for more com-

pact storage. In order to model the acoustic and visual fea-

tures that correspond to the subject talker an audio-visual

codebook is used.

Acoustic features used in the codebook are line spectral

frequencies (LSF) which provide a compact representation

of the speech signal. They have a number of nice properties

which make them attractive among speech researchers es-

pecially in the speech coding area. The relation of LSFs to

visual features have been investigated by Yehia et. al. [7].

They found that 91% of the total variance observed in the

orofacial data was accounted for by LSFs.

The visual features are principal components of 162 di-

mensional face point parameter vector. The principal com-
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Figure 1: Flow-diagram of the proposed face synthesis
algorithm.

ponents can be obtained using the Karhunen-Loeve trans-

formation technique. Since the movements of points on the

face are highly correlated, a signi�cant dimensionality re-

duction can be achieved with minor distortion. Principal

components have been used for various applications in im-

age processing and face animation [5].

Each codebook entry in the audio-visual codebook cor-

responds to a certain context and it consists of an acoustic

feature vector, and a visual feature vector. Associated with

each speci�c context there are 5 codewords corresponding

to uniformly spaced locations in time across the duration of

the phoneme. The audio-visual codebook entries are gen-

erated as follows. First, the speech data is segmented into

phonemes. Next, each phoneme is tagged with a symbol

which we refer to as \context-phone" which represents the

left and right context of the phoneme. After the data is

tagged this way, each phoneme is labeled with 5 uniformly

spaced time locations. The acoustic and visual features cor-

responding to those 5 locations are then appended to the

audio-visual codebook.

2.2. Automatic Generation of Visual Phoneme

Similarity Matrix

Since in practice the training data will not include all pos-

sible context-phones, we need a way of associating unseen

context-phones with the audio-visual codebook. In this pa-

per, a novel procedure for the automatic selection of closest

context-phone is developed. The criterion that we chose

for visual similarity of phonemes is based on Euclidean dis-

tance of principal components of face data. Therefore, ini-

tially an average principal component vector is estimated

for each phoneme.

mk =
1

Tk

TkX

t=1

Pkt; k = 1 : : : K; (1)

where K represents the total number of phonemes present

in the language, Tk represents the number of tokens for the

kth phoneme, and Pkt represents the tth principal compo-

nent coe�cient vector that is associated with kth phoneme.

Then, the Euclidean distance between each phoneme pair

is calculated as:

Dik = kmi �mkk i = 1 : : : K; k = 1 : : : K: (2)

Finally, a similarity measure is derived from the distances

using:

Sik = e
��Dik i = 1 : : : K; k = 1 : : : K: (3)

This formulation assures that similarity values, Sik, will

range between 0 and 1. The constant � in the equation

can be adjusted to control the dynamic range of similarity

values appropriately. In the experiments reported in this

study we used a value of 10 for �. In general, it is ob-

served that the entries in the automatically derived matrix

agree with intuitive expectations. However, we have not

performed subjective tests to verify this statement yet.

Next, we formulated a procedure to pick visually most

similar context-phones to an unseen context-phone. It has

been shown that visual confusability depends highly on the

context of a phoneme [2]. Therefore, we have taken into ac-

count the context of a phoneme when selecting the appro-

priate context-phones in the codebook. We represent the

context-phone as ...l3 l2 l1 c r1 r2 r3..., where \ln" repre-

sents nth phoneme to the left, \rn" represents n
th phoneme

to the right, and c represents the center phoneme. The sim-

ilarity of a test context-phone to each of the context-phones

in the codebook can be formulated as:

nj = Scj +

CX

i=1

�
�i
Slij +

CX

i=1

�
�i
Srij j = 1 : : : L(4)

where C is the level of context information, L is the to-

tal number of context-phones in the codebook, Scj is the

similarity between the center phone of the unseen context-

phone and the jth context-phone in the codebook, Slij is

the similarity between the ith left phoneme of the unseen

context-phone and the jth context-phone in the codebook,

and Srij is the similarity between the ith right phoneme

of the unseen context-phone and the jth context-phone in

the codebook. Since similarity matrix values range between

zero and one, by selecting � to be greater than 10 one can as-

sure that center phoneme match will always have the high-

est precedence in the decision procedure, and as we move

away from the center the in
uence of match will decrease.

The next section describes the face synthesis process us-

ing the visual phoneme similarity matrix and the audio-

visual codebook.



2.3. Face Synthesis

First, the context-phone which corresponds to the incoming

speech frame is compared to available context-phones in the

codebook in terms of their visual similarity. Using the sim-

ilarity metric discussed in the previous section, the top N

most similar context-phones are selected in the audio-visual

codebook. Next, the acoustic feature vector corresponding

to the incoming speech frame is compared to all the LSFs

that correspond to the top N context-phones. There will

be 5N such vectors, since each context-phone is represented

with 5 uniformly spaced audio-visual vectors. The incom-

ing LSF vector w is compared with each LSF vector, Li, in

the codebook and the distance, di, corresponding to each

codeword is calculated. The distance calculation is based

on a perceptual criterion where closely spaced line spec-

tral frequencies which are likely to correspond to formant

locations are assigned higher weights.

hk =
1

argmin(jwk �wk�1j; jwk �wk+1j)
k = 1; : : : ; P

di =

PX

k=1

hkjwk � Likj i = 1; : : : ; 5N (5)

where 5N is the reduced codebook size based on context.

Based on the distances from each codebook entry, an ex-

pression for the normalized codebook weights can be ob-

tained as:

vi = e�
diP
5N

l=1
e�
dl

i = 1; : : : ; 5N (6)

This set of weights v allows us to approximate the original

LSF vector w as a weighted combination of codebook LSF

vectors:

ŵk =

5NX

i=1

viwik (7)

The value of 
 in the previous equation is found by an

incremental search in the range of 0.2 to 2 with the criterion

of minimizing the perceptual weighted distance between the

approximated LSF vector ~w and original LSF vector w.

The set of weights v estimated based on acoustic similarity

are used to construct the PCs of face points corresponding

to the current speech frame:

p̂(t) =

5NX

i=1

viFi (8)

where Fi represents the average principal component vec-

tor for ith codebook entry. Next, the time sequence of es-

timated principal component vectors, p̂(t) is smoothed to

provide more natural face point trajectories. We used two

di�erent methods for smoothing: i) triangular windowing;

and ii) spline interpolation.

3. EVALUATIONS

We used ten minutes of audio-visual training data from

a single talker to generate our codebooks and the visual

phoneme similarity matrix. Five minutes of data was set

aside for testing. The visual data was recorded at a 60

Hz sampling rate. Using the proposed algorithm face point

trajectories were synthesized for the test data. In order to

test the upper limit on the performance of the algorithm,

we resynthesized the training utterances as well. Figure 2

shows an example face trajectory synthesized from one of

the test utterances. Here, the middle plot shows the cen-

ter upper lip point trajectories along y-axis across time

for original (dark dotted curve), synthesized with spline

smoothing (dark solid curve), and synthesized with trian-

gular smoothing (light curve). The bottom plot shows the

center lower lip point trajectories along y-axis across time

for original (dark dotted curve), synthesized with spline

smoothing (dark solid curve), and synthesized with triangu-

lar smoothing (light curve). As can be seen from the �gure,

both synthesis algorithms are approximating the true face

point trajectories reasonably well. For example, for the /f/

phonemes in \often" (at time 0.8 sec) and \farm" (at time

2.0 sec) the synthesized lower lip moves upward following

the true trajectory. In fact, the highest error regions cor-

respond to non-speech sections. For speech sections, the

performance is signi�cantly better. From the �gure it can

also be observed that the spline method produces more nat-

ural and smooth trajectories when compared to triangular

smoothing method. However, it results in relatively larger

delays when compared to the triangular smoothing method.

For the evaluations, we used the correlation coe�cient

between original and synthesized face point trajectories as

the performance criterion. In order to make a fair judg-

ment of the performance we used speech-only frames. The

silence frames were identi�ed and disregarded in the evalu-

ations based on energy thresholding. In order not to disre-

gard stop consonants a median �ltering over a su�ciently

long duration (112 ms) on the energy contour was applied

before the energy thresholding. The selected frames are

marked with dots in a straight line at the center of the lip

trajectory plots in Figure 2. No dots are printed for silence

frames. Since most of the points on the face do not move

signi�cantly, we used upper and lower lip y-axis trajecto-

ries to obtain a reference of performance. The average cor-

relation coe�cients between face point coordinates for the

original and synthesized data are shown in Table 1 both for

training and test data. From the table it can be seen that

despite the fact that the spline method produces more nat-

ural face point trajectories it performs slightly worse when

compared to the triangular smoothing method. This re-

sult can be explained by the fact that in general the spline

method produces relatively larger delays.

In order to determine the optimal number of similar

context-phones (N in Equation 5) used in the restricted

codebook search, we performed simulations. Figure 3 shows

the correlation between synthesized (triangular smoothing)

and true face point trajectories as a function of the num-



ber of similar context-phones used in the codebook. After 3

context-phones the curve levels o� for held-out data. As can

be expected the performance on the training data degrades

as more context-phones are used.
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Figure 2: The comparison of original and synthesized
face point trajectories for held-out data. The sentence
was \Tornadoes often destroy acres of farm land".

In order to determine the optimal number of similar

context-phones (N in Equation 5) used in the restricted

codebook search, we performed simulations. Figure 3 shows

the correlation between synthesized and true face point tra-

jectories as a function of the number of similar context-

phones used in the codebook. After 3 context-phones the

curve levels o� for held-out data. As can be expected the

performance on the training data degrades as more context-

phones are used.

Our future plans include the development of a more ac-

curate global evaluation measure in terms of its correlation

with human judgment.

4. CONCLUSION

In this paper, a novel algorithm for face point trajectory

synthesis is described. For the modeling phase, an audio-

visual codebook is generated based on context-dependent

phonetic labels. In addition, the automatic generation of a

visual phoneme similarity matrix is described. The code-

book and the matrix are then used in the synthesis stage to

select the most likely codebook entries for a given speech

segment and phonetic label. The most signi�cant contribu-

tion in this paper is the usage of acoustics in synthesizing

the �ne detail face trajectories. The algorithm can be gener-

alized by not restricting the codebook search using phonetic

information. In that case, acoustic information alone can be

used to determine the codebook weights across the whole

audio-visual codebook. The performance may not be as

good when compared to algorithm performance using pho-

netic information, since acoustically confusable phonemes

(e.g., /m/ versus /n/) may create problems in the synthe-

sized face in such a scheme. However, this capability may be

useful in practical applications such as video conferencing

or where language independence is a requirement.
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Figure 3: The in
uence of the number of similar context
phones N incorporated in the codebook on the perfor-
mance of the proposed algorithm.

Face Synthesis Algorithm Performance Evaluation

Test condition Whole Face Lower Lip Upper Lip

Training Data 0.9239 0.9463 0.9287

Test Data 0.7338 0.8468 0.7230

Table 1: Average Correlation between original and syn-
thetic face point trajectories during speech-only sections
using top 3 visually most similar context-phones.
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